Management of caotic systems with the model for the regulation of agonistic antagonistic couples

  • E. Bernard-Well
8. Uncertainty In Intelligent Systems
Part of the Lecture Notes in Computer Science book series (LNCS, volume 521)


The elementary model for the regulation of agonistic antagonistic couples (MRAAC), formed by two state and two control non-linear differential equations, has been built to simulate the behavior of agents with opposite and cooperative actions in order to be able to check an imbalance, defined in relation to reference values, if it occured. The agonistic antagonistic (AA) networks associates several MRAAC in an AA fashion. In this paper, we mainly consider the possibility of quasiperiodic and strange attractors (SA) (obtained by some cyclic inputs), and we propose the notion of "balanced" and "imbalanced" SA. In case of "imbalance", the whole of the network may be theoretically balanced again by the use of only a couple of control variables, with or without turning the SA's into periodic attractors.

Key words

Control strange attractors chaos networks agonistic antagonistic models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    A. BABLOYANTZ and A. DESTEXHE, Proc.Natl.Acad.Sc.USA, 83 (1986): 3513–3517.Google Scholar
  2. (2).
    E. BERNARD-WELL, in Petits Groupes et Grands Systèmes, Hommes et Techniques, Paris, pp. 143–153.Google Scholar
  3. (3).
    E. BERNARD-WELL, in Régulations physiologiques: Modèles Récents, G. CHAUVET, éd., Masson, Paris, 1986, pp. 133–155.Google Scholar
  4. (4).
    E. BERNARD-WEIL, P. VAYRE and J.L. JOST, Ann.Endocrinol., 47(1986), 201–203.Google Scholar
  5. (5).
    E. BERNARD-WEIL, in Mathematical Models in Medicine, M. WITTEN, ed., Pergamon Press, New York, t.I, pp. 1587–1600.Google Scholar
  6. (6).
    E. BERNARD-WELL, Précis de Systémique Ago-Antagoniste. Introduction aux Stratégies Bilatérales, L'Interdisciplinaire, Limonest, 1988.Google Scholar
  7. (7).
    E. BERNARD-WEIL, Rev.Intern.Systém., 2 (1988), 399–416.Google Scholar
  8. (8).
    M. DUBOIS, P. AATEN et P. BERGE, La Recherche, 18 (1987), 190–201.Google Scholar
  9. (9).
    A.L. GOLDBERGER and B.J. WEST, in Chaos in Biological Systems, H. DEGN, A.V. HOLDEN and L.F. OLSEN, eds, Plenum Press, 1987, pp. 1–4.Google Scholar
  10. (10).
    A. GOLDBETER and O. DECROLY, Am.J.Physiol., 245 (1983), R478–R483.PubMedGoogle Scholar
  11. (11).
    H. KAWAKAMI, Proc. IEEE Int.Symposium on Circuits, vol. 1, pp.378–381.Google Scholar
  12. (12).
    J.G. MILTON, A. LONGTIN, A. BEUTER et al., J.Theor.Biol., 138 (1980), 129–147.Google Scholar
  13. (13).
    C. NICOLIS and G. NICOLIS, Nature, 311 (1984), 529–532.CrossRefGoogle Scholar
  14. (14).
    I. PROCACCIA, Nature, 333 (1988), 618–623.CrossRefGoogle Scholar
  15. (15).
    K. TOMITA, Phys.Rep., 86 (1982), 1–25.CrossRefGoogle Scholar
  16. (16).
    P. TRACQUI, Des concepts de la dynamique non-linéaire à l'auto-organisation des systèmes biologiques, Thèse de Doctorat ès-Sciences, Université Paris-VI, 1990.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • E. Bernard-Well
    • 1
  1. 1.Clinique Neuro-Chirurgicale de l'Hôpital de la PitiéParis

Personalised recommendations