Advertisement

A topological approach to some cluster methods

  • J. Jacas
  • J. Recasens
8. Uncertainty In Intelligent Systems
Part of the Lecture Notes in Computer Science book series (LNCS, volume 521)

Abstract

One of the most usual ways of classifying the elements of a set is to cluster them according to some kind of “proximity measure”. Proximity is a topological concept and therefore it is natural to ask for topological structures that lead to cluster methods.

Using this idea, we construct some families of cluster methods starting on from a kind of VD-spaces.

In order to relate the elements of these families, morphisms between cluster methods are defined.

Keywords

Cluster Analysis VD-space single linkage Numerical Stratified Clustering Indistinguishability operators triangular norm triangular conorm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Alsina, C., Trillas, E. (1978) Introducción a los Espacios Métricos Generalizados. Fund. J. March. Serie Universitaria 49.Google Scholar
  2. [2]
    Bouchon, B., Cohen, G., Frankl, P. (1982) Metrical properties of fuzzy relations. Problems of Control and Information Theory 11, 389–396.Google Scholar
  3. [3]
    Defays, D. (1975) Ultramétriques et relations floues. Bull. Societé Royale de Sciences de Liège, 1–2, 104–118.Google Scholar
  4. [4]
    Jacas, J. (1990) Similarity Relations — The Calculation of Minimal Generating Families, Fuzzy Sets and Systems 35, 151–162.CrossRefGoogle Scholar
  5. [5]
    Jacas, J., Valverde, L. (1987) A Metric Characterization of T-transitive Relations, Proceedings of FISAL-86, Palma de Mallorca 81–89.Google Scholar
  6. [6]
    Jacas, J., Valverde, L. (1990). On Fuzzy Relations, Metrics and Cluster Analysis in: J.L. Verdegay & M. Delgado Eds., Approximate Reasoning. Tools for Artificial Intelligence (Verlag TÜV, Rheinland) 15R, 96.Google Scholar
  7. [7]
    Janowitz, H.F., Schweizer, B. (1988) Ordinal amb Percentile Clustering. Technical Report. Dept. of Mathematics and Statistics. Univ. Massachusetts.Google Scholar
  8. [8]
    Jardine, N., Sibson, R. (1971) Mathematical Taxonomy. Wiley, New York.Google Scholar
  9. [9]
    Schweizer, B., Sklar, A. (1983) Probabilistic Metric Spaces. North-Holland, New York.Google Scholar
  10. [10]
    Sneath, P.H.A., Sokal, R.P. (1973) Numberical Taxonomy. W.H. Freeman & Co., San Francisco.Google Scholar
  11. [11]
    Valverde, L. (1985) On the structure of F-indistinguishability operators. Fuzzy Sets and Systems, 17, 313–328.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • J. Jacas
    • 1
  • J. Recasens
    • 1
  1. 1.Sec. Matemàtiques i Informàtica E.T.S. d'Arquitectura de BarcelonaUniv. Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations