A topological approach to some cluster methods

  • J. Jacas
  • J. Recasens
8. Uncertainty In Intelligent Systems
Part of the Lecture Notes in Computer Science book series (LNCS, volume 521)


One of the most usual ways of classifying the elements of a set is to cluster them according to some kind of “proximity measure”. Proximity is a topological concept and therefore it is natural to ask for topological structures that lead to cluster methods.

Using this idea, we construct some families of cluster methods starting on from a kind of VD-spaces.

In order to relate the elements of these families, morphisms between cluster methods are defined.


Cluster Analysis VD-space single linkage Numerical Stratified Clustering Indistinguishability operators triangular norm triangular conorm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Alsina, C., Trillas, E. (1978) Introducción a los Espacios Métricos Generalizados. Fund. J. March. Serie Universitaria 49.Google Scholar
  2. [2]
    Bouchon, B., Cohen, G., Frankl, P. (1982) Metrical properties of fuzzy relations. Problems of Control and Information Theory 11, 389–396.Google Scholar
  3. [3]
    Defays, D. (1975) Ultramétriques et relations floues. Bull. Societé Royale de Sciences de Liège, 1–2, 104–118.Google Scholar
  4. [4]
    Jacas, J. (1990) Similarity Relations — The Calculation of Minimal Generating Families, Fuzzy Sets and Systems 35, 151–162.CrossRefGoogle Scholar
  5. [5]
    Jacas, J., Valverde, L. (1987) A Metric Characterization of T-transitive Relations, Proceedings of FISAL-86, Palma de Mallorca 81–89.Google Scholar
  6. [6]
    Jacas, J., Valverde, L. (1990). On Fuzzy Relations, Metrics and Cluster Analysis in: J.L. Verdegay & M. Delgado Eds., Approximate Reasoning. Tools for Artificial Intelligence (Verlag TÜV, Rheinland) 15R, 96.Google Scholar
  7. [7]
    Janowitz, H.F., Schweizer, B. (1988) Ordinal amb Percentile Clustering. Technical Report. Dept. of Mathematics and Statistics. Univ. Massachusetts.Google Scholar
  8. [8]
    Jardine, N., Sibson, R. (1971) Mathematical Taxonomy. Wiley, New York.Google Scholar
  9. [9]
    Schweizer, B., Sklar, A. (1983) Probabilistic Metric Spaces. North-Holland, New York.Google Scholar
  10. [10]
    Sneath, P.H.A., Sokal, R.P. (1973) Numberical Taxonomy. W.H. Freeman & Co., San Francisco.Google Scholar
  11. [11]
    Valverde, L. (1985) On the structure of F-indistinguishability operators. Fuzzy Sets and Systems, 17, 313–328.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • J. Jacas
    • 1
  • J. Recasens
    • 1
  1. 1.Sec. Matemàtiques i Informàtica E.T.S. d'Arquitectura de BarcelonaUniv. Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations