Advertisement

Formalizing multiple-valued logics as institutions

  • J. Agustí-Cullell
  • F. Esteva
  • P. Garcia
  • Ll Godo
5. Non-Standard Logics
Part of the Lecture Notes in Computer Science book series (LNCS, volume 521)

Abstract

Many of the uncertainty management systems used in the Knowledge Based Systems technology can be considered as the set of mechanisms that a certain underlying multiple-valued logic supplies: certainty values, numeric or linguistic, would be the truth-values of that logic, a knowledge base would be a set of axioms, and the mechanisms of uncertainty combination and propagation would be the inference rules of the deduction system. In this communication we formalize multiple-valued logics inside the institutional framework. We structure multiple-valued logics as families of institutions, each one being indexed by a class of truth-values algebras, in such a way that each morphism between truth-values algebras determines a corresponding morphism of institutions. These institution morphisms are a basic mechanism in modular Expert System languages in order to build uncertainty management systems that deal with different logics in different modules.

Keywords

Multiple-valued Logics Institution Entailment System Truth-Values Algebra 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AGUSTI-CULLEL J., SIERRA C. (1989) ‘Adding Generic Modules to Flat Rule-Based Languages: a low cost approach'. Methodologies for Intelligent Systems, pp. 43–52, North Holland.Google Scholar
  2. ALSINA C., TRILLAS E., VALVERDE L. (1983) ‘On some logical connectives for Fuzzy Set Theory'. Journal of Mathematical Analysis and Applications, 93, pp. 15–26.CrossRefGoogle Scholar
  3. GARCIA P., VALVERDE L. (1989) ‘Isomorphisms between De Morgan TripletsFuzzy sets and Systems Vol. 30, No 1. pp. 27–36. North-HollandCrossRefGoogle Scholar
  4. GODO L. (1990) ‘Contribució a l'estudi de models d'inferència en els sistemes possibilístics', Ph. D. Universitat Politècnica de Catalunya. Barcelona.Google Scholar
  5. GODO L., LOPEZ DE MANTARAS R., SIERRA C., VERDAGUER A. (1989) ‘MILORD:The architecture and management of linguistically expressed uncertainty'. Int. Journal of Intelligent System Vol. 4 no 4, pp. 471–501.Google Scholar
  6. GOGUEN J., BURSTALL R.M. (1983) ‘Introducing InstitutionsProc. Workshop on Logics of Programs, Carnegie-Mellon University. Springer LNCS 64, pp. 221–256.Google Scholar
  7. HARPER R., SANNELLA D., TARLECKI A. (1989) ‘Structure and Representation in LFProc.4th. IEEE Symposium on Logic of Computer Science.Google Scholar
  8. MESEGUER J. (1989) ‘General Logics'. In H.D. Ebbinghaus et al. (eds) Proc. Logic Colloquium '87. North-Holland.RASIOWA H., (1974) ‘An algebraic approach to non-classical logicsNorth Holland.Google Scholar
  9. RESCHER N. (1969) ‘Many-valued LogicMc Graw-Hill.Google Scholar
  10. SIERRA C. (1989) ‘MILORD: Arquitectura multi-nivell per a sistemes experts en classificació’ Ph. D. Universitat Politècnica de Catalunya. Barcelona.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • J. Agustí-Cullell
    • 1
  • F. Esteva
    • 1
  • P. Garcia
    • 1
  • Ll Godo
    • 1
  1. 1.Centre d'Estudis Avançats de Blanes (CSIC)BlanesGirona Spain

Personalised recommendations