Semantic evaluation in possibilistic logic application to min-max discrete optimisation problems

  • Jérôme Lang
5. Non-Standard Logics
Part of the Lecture Notes in Computer Science book series (LNCS, volume 521)


Propositional possibilistic logic is a logic of uncertainty in which the notion of inconsistency is gradual, each interpretation having a compatibility degree with the uncertain available knowledge. We present here an algorithm for the search of the best interpretation of a set of uncertain clauses (i.e., the most compatible with it), which is an extension to possibilistic logic of semantic evaluation (based on the Davis and Putnam procedure). Possibilistic logic is also a general framework for translating discrete "min-max" optimisation problems (some examples of such problems are discussed).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Davis M., Putnam H. (1960) A computing procedure for quantification theory. J. of the Assoc. for Computing Machinery, 7, 201–215.Google Scholar
  2. Dubois D., Prade H. (1980) Fuzzy Sets and Systems: Theory and Applications. Mathematics in Science and Engineering Series, Vol. 144, Academic Press, New York.Google Scholar
  3. Dubois D., Prade H. (1987) Necessity measures and the resolution principle. IEEE Trans. Systems, Man and Cybernetics, 17, 474–478.Google Scholar
  4. Dubois D., Lang J., Prade H. (1987) Theorem proving under uncertainty — A possibility theory-based approach. Proc. 10th Inter. Joint Conf. on Artificial Intelligence, Milano, 984–986.Google Scholar
  5. Dubois D., Prade H. (1988) (with the collaboration of Farreny H., Martin-Clouaire R., Testemale C.) Possibility theory: an Approach to Computerized Processing of Uncertainty, Plenum Press, New York.Google Scholar
  6. Dubois D., Lang J., Prade H. (1989) Automated reasoning using posibilistic logic: semantics, non-monotonocity and variable certainty weights. Proc. 5th Workshop on Uncertainty in Artificial Intelligence, Windsor (Canada), Aug. 18–20, 81–87.Google Scholar
  7. Dubois D., Lang J., Prade H. (1990a) POSLOG: an inference system based on possibilistic logic. Proc. in National Fuzzy Information Processing Society Congress, 1990, to appear.Google Scholar
  8. Dubois D., Lang J., Prade H. (1990b) Fuzzy sets in automated reasoning: logical approaches. Fuzzy Sets and Systems, to appear.Google Scholar
  9. Jeannicot S., Oxusoff L., Rauzy A. (1988) Evaluation sémantique: une propriété de coupure pour rendre efficace la procédure de Davis et Putnam. Revue d'Intelligence Artificielle, 2(1), 41–60.Google Scholar
  10. Lang J. (1990) Evaluation sémantique en logique possibiliste propositionnelle. Research Report IRIT/90-7/R, IRIT, Univ. P. Sabatier, Toulouse, France. Revue d'Intelligence Artificielle, 4(4), 27–48.Google Scholar
  11. Lang J. (1991) “Logique possibiliste: aspects formels, déduction automatique, et applications. Thèse de l'Université P. Sabatier, Toulouse, France.Google Scholar
  12. Oxusoff L., Rauzy A. (1989) L'évaluation sémantique en calcul propositionnel. PhD of the University Aix-Marseille II, January 1989.Google Scholar
  13. Purdom P.W. (1983) Search rearrangement backtracking and polynomial average time. Artificial Intelligence, 21, 117–133.Google Scholar
  14. Rosenfeld A. (1975) Fuzzy graphs. In: Fuzzy Sets and their Applications to Cognitive and Decision Processes (L.A. Zadeh, K.S. Fu, K. Tanaka, and M. Shimura, eds), Academic Press, New York, 77–95.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Jérôme Lang
    • 1
  1. 1.Institut de Recherche en Informatique de ToulouseUniversité Paul SabatierToulouse CedexFrance

Personalised recommendations