On the notion of uncertain belief revision systems

  • C. Bernasconi
  • S. Rivoira
  • S. Termini
4. Non-Monotonic Reasoning
Part of the Lecture Notes in Computer Science book series (LNCS, volume 521)


The notion of uncertain belief revision systems (UBRS) is introduced as an extension of assumption-based truth maintenance systems (ATMS) to a many valued logic.

In this framework, some results relative to the many-valued implication pq equivalent to notpvq are considered.

Problems arising when different implication functions are defined in many valued logic are then discussed and some steps of a research development are described.


intelligent systems reasoning systems inference uncertainty approximate reasoning resolution principle fuzzy resolution principle fuzzy Prolog ATMS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bobrow D.G. & Hayes P.J. (eds) (1985), A.I. — Where Are We?, Artificial Intelligence 25, 375–415.Google Scholar
  2. A.L. Brown, D.E. Gaucas, D. Benanav (1987), An Algebraic Foundation for Truth Maintenance, Proc. 10th IJCAI, Milano, 973–980.Google Scholar
  3. Doyle J.(1979), A Truth Maintenance System, Artificial Intelligence 12, pp. 231–272.CrossRefGoogle Scholar
  4. de Kleer J. (1986a), An Assumption-based TMS. Artificial Intelligence 28, pp. 127–162.CrossRefGoogle Scholar
  5. de Kleer J. (1986b), Problem solving with the ATMS. Artificial Intelligence 28, pp. 197–224.CrossRefGoogle Scholar
  6. Lee R.C.T.(1972), Fuzzy Logic and the Resolution Principle, Journal of A.C.M. 19, 109–119.Google Scholar
  7. Mukaidono M. (1982), Fuzzy Inference of resolution style, in "Fuzzy Sets and Possibility Theory", R.R. Yager (ed), Pergamon Press, New York, 224–231.Google Scholar
  8. Mukaidono M. et al. (1989), Fundamentals of Fuzzy Prolog, International Journal of Approximate Reasoning, 3, 179–193.CrossRefGoogle Scholar
  9. Reinfrank M., de Kleer J., M.L. Ginzberg, E. Sandewall (Eds) (1989), Nonmonotonic reasoning, Springer Lecture Notes in A.I., vol. 346.Google Scholar
  10. Reiter R. (1987), Nonmonotonic reasoning, Ann. Rev. Comput. Sci. 2, pp. 147–186.CrossRefGoogle Scholar
  11. Salomaa A. (1959), On many valued systems of Logic, Ajatus XXII, 115–159.Google Scholar
  12. Trillas E. & Valverde L. (1984), On Implication and Indistinguishability in the Setting of Fuzzy Logic, in Kacprzyk & Yager (eds), Management Decision Support Systems using Fuzzy Sets and Possibility Theory, Verlag TUV.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • C. Bernasconi
    • 1
  • S. Rivoira
    • 1
  • S. Termini
    • 1
  1. 1.Dipartimento di MatematicaUniversità degli StudiPerugiaItaly

Personalised recommendations