Nonmonotonic reasoning and modal logic, from negation as failure to default logic

  • Philippe Balbiani
4. Non-Monotonic Reasoning
Part of the Lecture Notes in Computer Science book series (LNCS, volume 521)


We present a modal characterization of two well-known nonmonotonic formalisms : the negation as failure rule and default logic. The semantics of logic programming with the negation as failure rule is described through the definition of a modal completion. In modal logic K4, this completion characterizes provability in logic programming with respect to SLDNF-resolution while in modal logic Pr (the modal logic of provability) it characterizes unprovability in logic programs.


nonmonotonic reasoning logic programming modal logic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Apt K. R., Blair H. A. and Walker A. 1988, Towards a theory of declarative knowledge, in Foundations of Deductive Databases and Logic Programming (J. Minker, Ed.), Morgan Kaufmann Publishers, Los Altos, CA, 89–148.Google Scholar
  2. Balbiani P. (1991), Une caractérisation modale de la sémantique des programmes logiques avec négation, thèse de l'université Paul Sabatier, janvier 1991.Google Scholar
  3. Balbiani P. (1991), A modal semantics for the negation as failure and the closed world assumption rules, to be presented at the eighth Symposium on Theoretical Aspects of Computer Science, Hamburg, february 1991.Google Scholar
  4. Besnard P. 1989, An introduction to default logic, Springer-Verlag.Google Scholar
  5. Bidoit N. and Froidevaux C. 1988, More on stratified default theories, Proc. of the European Conf. on Artificial Intelligence, 492–494.Google Scholar
  6. Boolos G. 1979, The unprovability of consistency, Cambridge University Press.Google Scholar
  7. Chellas B. F. 1980, Modal logic: an introduction, Cambridge University Press.Google Scholar
  8. Clark K. L. 1978, Negation as failure, in Logic and Databases (H. Gallaire and J. Minker, Eds) Plenum Press, New York, 293–322.Google Scholar
  9. Fitting M. R. 1985, A Kripke-Kleene semantics for logic programs, J. of Logic Programming, 2:295–312.Google Scholar
  10. Gelfond M. 1987, On stratified autoepistemic theories, Proc. of the Sixth Nat. Conf. on Artificial Intelligence (AAAI-87).Google Scholar
  11. Hughes G. E. and Cresswell M. J. 1984, A companion to modal logic, London, Methuen.Google Scholar
  12. Jaffar J., Lassez J.-L. and Lloyd J. W. 1983, Completeness of the negation as failure Rule, Proc. of the Eighth Int. Joint Conf. on Artificial Intelligence, Karlsruhe, 500–506.Google Scholar
  13. Kripke S. 1963, Semantical analysis of modal logic, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 9:67–96.Google Scholar
  14. Kunen K. 1987, Negation in logic programming, J. of Logic Programming, 4:289–308.CrossRefGoogle Scholar
  15. Lifschitz V. 1988, On the declarative semantics of logic programs with negation, in Foundations of Deductive Databases and Logic Programming, (J. Minker, Ed.), 177–192.Google Scholar
  16. Lloyd J. W. Foundations of logic programming, Springer Verlag, 1984.Google Scholar
  17. Moore R. C. 1985, Semantical Considerations on Nonmonotonic Logic, Artificial Intelligence, 25:75–94.CrossRefGoogle Scholar
  18. Reiter R. 1980, A logic for default reasoning, Artificial Intelligence, 13:81–132.CrossRefGoogle Scholar
  19. Smorynski C. 1984 Modal logic and self reference, Handbook of Philosophical Logic (D. Gabbay et F. Guenthner, Eds), Reidel, 441–496.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Philippe Balbiani
    • 1
  1. 1.Institut de Recherche en Informatique de Toulouseuniversité Paul SabatierToulouse Cedex

Personalised recommendations