Advertisement

About the logical interpretation of ambiguous inheritance hierarchies

  • E. Grégoire
4. Non-Monotonic Reasoning
Part of the Lecture Notes in Computer Science book series (LNCS, volume 521)

Abstract

In this paper, we present a new approach to the logical formalization of ambiguous inheritance hierarchies. This approach involves the translation of inheritance nets into their corresponding hierarchical and stratified logic programs. It allows one to express the semantics of these nets in terms of most major nonmonotonic logics. A theorem is established showing that this approach can be applied to a broad class of inheritance theories dealing with acyclic nets and giving rise to unique extensions.

Keywords

knowledge representation inheritance nonmonotonic logics default reasoning logic programming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Apt et al. 88]
    K.R. Apt, H. Blair and A. Walker, Towards a theory of declarative knowledge, in: J. Minker (ed.), Foundations of Deductive Databases and Logic Programming, Morgan Kaufmann, Los Altos, pp. 89–148, 1988.Google Scholar
  2. [Bidoit and Froidevaux 87]
    N. Bidoit and C. Froidevaux, Minimalism subsumes default logic and circumscription in stratified logic programming, Proc. LICS-87, pp. 89–97, 1987.Google Scholar
  3. [Clark 78]
    K.L. Clark, Negation as failure, in: H. Gallaire and J. Minker (eds.), Logic and Data Bases, Plenum Press, New York, pp. 293–322, 1978.Google Scholar
  4. [Doherty 89]
    P. Doherty, A correspondence between inheritance hierarchies and preferential entailment, in: Z.W. Ras (ed.), Methodologies for Intelligent Systems 4, North Holland, pp. 395–402, 1989.Google Scholar
  5. [Etherington and Reiter 83]
    D.W. Etherington and R. Reiter, On inheritance hierarchies with exceptions, Proc. AAAI-83, pp. 104–108, 1983.Google Scholar
  6. [Etherington 88]
    D.W. Etherington, Reasoning with Incomplete Information, Research Notes in Artificial Intelligence, Pitman, London, 1988.Google Scholar
  7. [Gelfond 87]
    M. Gelfond, On stratified autoepistemic theories, Proc. AAAI-87, pp. 207–211, 1987.Google Scholar
  8. [Gelfond and Przymusinska 89]
    M. Gelfond and H. Przymusinska, Inheritance reasoning in autoepistemic logic, in: Z.W. Ras (ed.), Methodologies for Intelligent Systems 4, North Holland, pp. 419–429, 1989.Google Scholar
  9. [Gelfond et al. 89]
    M. Gelfond, H. Przymusinska, T. Przymusinski, On the relationship between circumscription and negation as failure, Artificial Intelligence, 38, pp. 75–94, 1989.CrossRefGoogle Scholar
  10. [Grégoire 89a]
    E. Grégoire, Reducing inheritance theories to default logic and logic programs, in: J. Hannu and L. Seppo (eds.), Second Scandinavian Conference on Artificial Intelligence (SCAI-89), vol. 2, pp. 1064–1079, Tampere, Finland, June 1989.Google Scholar
  11. [Grégoire 89b]
    E. Grégoire, Skeptical theories of inheritance and nonmonotonic logics, in: Z.W. Ras (ed.), Methodologies for Intelligent Systems 4, North Holland, pp. 430–438, 1989.Google Scholar
  12. [Grégoire 89c]
    E. Grégoire, Logiques non monotones, programmes logiques stratifiés et théories sceptiques de l'héritage, PhD thesis, Unité d'Informatique, Faculté des Sciences Appliquées, Université de Louvain, Louvain-la-Neuve, Belgium, June 1989.Google Scholar
  13. [Grégoire 90a]
    E. Grégoire, Skeptical inheritance can be more expressive, in: L.C. Aiello (ed.), Proc. of the 9th Europ. Conf. on Artificial Intelligence (ECAI-90), Pitman, pp. 326–332, 1990.Google Scholar
  14. [Grégoire 90b]
    E. Grégoire, Logiques non monotones et Intelligence Artificielle, Hermès, Paris, 1990.Google Scholar
  15. [Hayes 79]
    P.J. Hayes, The logic of frame, in: D. Metzing (ed.), Frame Conceptions and Text Understanding, de Gruyter, Berlin, pp. 46–61, 1979.Google Scholar
  16. [Horty et al. 87,90]
    J.F. Horty, R.H. Thomason and D.S. Touretzky, A skeptical theory of inheritance in nonmonotonic semantic networks, Proc. AAAI-87, pp. 358–363, 1987. Expanded version in: Artificial Intelligence, vol. 42, pp. 311–348, 1990.Google Scholar
  17. [Horty and Thomason 88]
    J.F. Horty and R.H. Thomason, Mixing strict and defeasible inheritance, Proc. AAAI-88, pp. 427–432, 1988.Google Scholar
  18. [Lifschitz 88]
    V. Lifschitz, On the declarative semantics of logic programs with negation, in: J. Minker (ed.), Foundations of Deductive Databases and Logic Programming, Morgan Kaufmann, Los Altos, pp. 177–192, 1988.Google Scholar
  19. [McCarthy 86]
    J. McCarthy, Applications of circumscription to formalizing common-sense knowledge, Artificial Intelligence, 28(1), pp. 89–116, 1986.CrossRefGoogle Scholar
  20. [Moore 85]
    R.C. Moore, Semantical considerations on non-monotonic logic, Artificial Intelligence, 25(1), pp. 75–94, 1985.CrossRefGoogle Scholar
  21. [Przymusinski 88a]
    T.C. Przymusinski, On the semantics of stratified deductive database, in: J. Minker (ed.), Foundations of Deductive Databases and Logic Programming, Morgan Kaufmann, Los Altos, pp. 193–216, 1988.Google Scholar
  22. [Przymusinski 88b]
    T.C. Przymusinski, Perfect model semantics, Proc. Fifth Int. Conf. on Logic Programming, pp. 1081–1096, 1988.Google Scholar
  23. [Przymusinski 88c]
    T.C. Przymusinski, On the relationship between logic programming and non-monotonic reasoning, Proc. AAAI-88, pp. 444–448, 1988.Google Scholar
  24. [Reiter 80]
    R. Reiter, A logic for default reasoning, Artificial Intelligence, 13(1–2), pp. 81–131, 1980.CrossRefGoogle Scholar
  25. [Shepherdson 88]
    J.C. Shepherdson, Negation in logic programming, in: J. Minker (ed.), Foundations of Deductive Databases and Logic Programming, Morgan Kaufmann, Los Altos, pp. 19–88, 1988.Google Scholar
  26. [Stein 89]
    L.A. Stein, Skeptical inheritance: computing the intersection of credulous extensions, Proc. IJCAI89, 1989.Google Scholar
  27. [Thomason and Horty 89]
    R.H. Thomason and J.F. Horty, Logics for inheritance theory, in: M. Reinfrank et al. (eds.), Non-Monotonic Reasoning (Proc. of the 2nd Int. Workshop), Springer Verlag, LNCS 346, pp. 220–237, 1989.Google Scholar
  28. [Touretzky 86]
    D.S. Touretzky, The Mathematics of Inheritance Systems, Morgan Kaufmann, Los Altos, 1986.Google Scholar
  29. [Touretzky et al. 87]
    D.S. Touretzky, J.F. Horty and R.H. Thomason, A clash of intuitions: the current state of nonmonotonic multiple inheritance systems, Proc. IJCAI-87, pp. 476–482, 1987.Google Scholar
  30. [van Gelder 88]
    A. van Gelder, Negation as failure using tight derivations for general logic programs, in: J. Minker (ed.), Foundations of Deductive Databases and Logic Programming, Morgan Kaufmann, Los Altos, pp. 149–176, 1988.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • E. Grégoire
    • 1
    • 2
  1. 1.Unité d'InformatiqueUniv. de LouvainLouvain-la-NeuveBelgium
  2. 2.UMIACSUniv. of MarylandCollege ParkUSA

Personalised recommendations