Generalized cardinal numbers and their ordering

  • Maciej Wygralak
3. Fuzzy Sets
Part of the Lecture Notes in Computer Science book series (LNCS, volume 521)


In this paper a general theory of power for hardly characterizable objects as well as related generalized cardinal numbers are presented. The attention is focused on the questions of order. Łukasiewicz logic is used as a supporting logic. The theory refers both to fuzzy sets and twofold fuzzy sets, partial sets, rough sets, etc.


Łukasiewicz logic Hardly characterizable objects Equipotency Powers Generalized cardinal numbers Order Operations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    BLANCHARD N. (1981). Theories cardinale et ordinale des ensembles flous, Thesis, Claude-Bernard University, Lyon.Google Scholar
  2. 2.
    GOTTWALD S. (1969). Konstruktion von Zahlbereichen und die Grundlagen der Inhaltstheorie in einer mehrwertigen Mengenlehre, Thesis, Leipzig.Google Scholar
  3. 3.
    KLAUA D. (1969). Partielle Mengen und Zahlen, Monatsber. Deut. Akad. Wiss. Berlin, 11, 585–599.Google Scholar
  4. 4.
    KLAUA D. (1972). Zum Kardinalzahlbegriff in der mehrwertigen Mengenlehre. In Theory of Sets and Topology (Asser G., Flachsmeyer J., Rinow W., Eds.), Deut. Verlag Wiss., 313–325.Google Scholar
  5. 5.
    ŠOSTAK A. (1989). Fuzzy cardinals and cardinalities of fuzzy sets. In Algebra and Discrete Mathematics, Latvian State University, 137–144 (in Russian).Google Scholar
  6. 6.
    TARSKI A. (1924). Sur quelques théorémes qui équivalent a l'axiome de choix, Fund. Math., 5, 147–154.Google Scholar
  7. 7.
    WYGRALAK M. (1986). Fuzzy cardinals based on the generalized equality of fuzzy subsets, Fuzzy Sets and Systems, 18, 143–158.CrossRefGoogle Scholar
  8. 8.
    WYGRALAK M. (1988). Fuzzy sets, twofold fuzzy sets and their cardinality. In Proc. 1st Joint IFSA-EC & EURO-WG Workshop on Progress in Fuzzy Sets in Europe (Kacprzyk J., Straszak A., Eds.), Warsaw, 369–374.Google Scholar
  9. 9.
    WYGRALAK M., On the power of a rough set, Fasc. Math., in print.Google Scholar
  10. 10.
    WYGRALAK M., Fuzzy sets — their powers and cardinal numbers. In Proc. 10th Inter. Seminar on Fuzzy Set Theory, Linz, 1988, in print.Google Scholar
  11. 11.
    WYGRALAK M., On HCH-objects and the proper choice of basic operations, In Proc. 3rd Polish Symp. IFM, Poznan, 1989, in print.Google Scholar
  12. 12.
    WYGRALAK M., Powers and generalized cardinal numbers for HCH-objects — basic notions, Math. Pann., submitted.Google Scholar
  13. 13.
    WYGRALAK M., Powers and generalized cardinal numbers for HCH-objects — operations, Fuzzy Sets and Systems, submitted.Google Scholar
  14. 14.
    WYGRALAK M., Generalized cardinal numbers for lattice valued HCH-objects, in preparation.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Maciej Wygralak
    • 1
  1. 1.Institute of MathematicsA. Mickiewicz UniversityMatejki 48/49Poznań

Personalised recommendations