Fast algorithms for Dempster-Shafer theory

  • Robert Kennes
  • Philippe Smets
1. Mathematical Theory Of Evidence
Part of the Lecture Notes in Computer Science book series (LNCS, volume 521)


The runtime of the usual algorithms computing the transformation of a basic belief assignment into its associated belief function and conversely is an exponential function of the cardinality of (the domain of) the basic belief assignment. In this paper, new algorithms with a polynomial runtime are presented. These algorithms appear to be optimal in the class of the so-called M-algorithms.


Dempster-Shafer theory Möbius transformation graph computational efficiency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

10. References

  1. Aigner M. (1979), Combinatorial Theory, Springer-Verlag.Google Scholar
  2. Barr M., Wells C. (1990), Category Theory for Computing Science, Prentice Hall.Google Scholar
  3. Kennes R. (1990), Computational Aspects of the Möbius Transformation of a Graph, Technical Report, IRIDIA/90-13, Université Libre de Bruxelles, Brussels, Belgium.Google Scholar
  4. Orponen P. (1990), Dempster's Rule of Combination is #P-complete, Artificial Intelligence, 44, 245–253.CrossRefGoogle Scholar
  5. Papadimitriou C. (1979), Optimality of the Fast Fourier Transform, J. ACM 26, 1, 95–102.CrossRefGoogle Scholar
  6. Provan G. M. (1990), A Logic-Based Analysis of Dempster-Shafer Theory, International Journal of Approximate Reasoning 4,451–495.CrossRefGoogle Scholar
  7. Shafer G. (1976), A Mathematical Theory of Evidence, Princeton University Press.Google Scholar
  8. Smets P. (1988), Belief Functions, In Non Standard Logics for Automated Reasoning, 253–286 (Smets P., Mamdani A., Dubois D. and Prade H. editors), Academic Press.Google Scholar
  9. Thoma H. M. (1989), Factorization of Belief Functions, unpublished Ph.D. thesis, Harvard University, Dept. of Statistics.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Robert Kennes
    • 1
  • Philippe Smets
    • 1
  1. 1.IRIDIAUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations