Advertisement

A method to build membership functions

Application to numerical/symbolic interface building
  • O. Bobrowicz
  • Choulet C. 
  • Haurat A. 
  • Sandoz F. 
  • Tebaa M. 
3. Fuzzy Sets
Part of the Lecture Notes in Computer Science book series (LNCS, volume 521)

Abstract

During the last years, the development of knowledge based systems has taken an increasing expansion in the control of complex industrial processes. The control knowledge is often vague, and it is necessary to create a tool to define the words of the language that are used by the expert when this one is reasoning. We propose a method to acquire and to represent the vague knowledge of the expert.

This method uses membership functions which are coming from the fuzzy set theory. This method is defined in a semantic definition module that allows to build the membership function of three dependent predicates which are defined on the same universe of discourse. Thus, the membership functions permit to obtain a representation which is conformable to the meaning that the expert gives to each predicate that corresponds to the terms of his domain. We determine the parameters of these functions from two kinds of knowledge : first, the knowledge about semantic links joining the three predicates we want to represent on the same universe of discourse, and next, the expert knowledge (heuristics) about the meaning the expert wants to give to each predicate.

The semantic definition module is used in a decision making system assisting the operators which are controlling the process during disturbing conditions. This module is a "numeric / symbolic" interface that, from each numerical datum issuing from the process, interprets it in symbolic information. Then, these symbolic information is in the formalism of the decision making system. The collected information is in harmony with the knowledge of the operators, and leads to a best exploitation of the decision making system.

Keywords

vague knowledge fuzzy predicate membership function semantic definition module decision making system "numeric / symbolic" interface 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5-References

  1. [1]
    BOBROWICZ O. — 11 Janvier 1991 La représentation et l'utilisation de connaissances imprécises pour l'aide à la conduite de procédé Thèse de l'Université de Franche-Comté, Spécialité Automatique-Informatique, FranceGoogle Scholar
  2. [2]
    BOBROWICZ O. — HAURAT A.— Juin 1988 Un système expert d'aide à la conduite d'un four en cimenterie — Acquisition des connaissances basée sur une structuration de l'ensemble des informations du système de production. IASTED International Conference, Genève, SuisseGoogle Scholar
  3. [3]
    CHOULET C. Septembre 1988 La logique floue ou comment représenter des connaissances imprécises en vue de leur captage. Rapport de DEA Informatique, Automatique et Robotique, Université de Franche-Comté, FranceGoogle Scholar
  4. [4]
    GURU — 1988 Manuel de référence GURU V1.1 — Micro Data Base SystemGoogle Scholar
  5. [5]
    KICKERT W.J.M. — VAN NAUTA LEMKE H.H. — 1976 Application of a Fuzzy Controller in a Warm Water Plant. Automatica, Vol. 12, pp 301–308, Pergamon PressCrossRefGoogle Scholar
  6. [6]
    RASMUSSEN J. — 1985 The Role of Hierarchical Knowledge Representation in Decision making and System Management IEEE Transactions on Systems, Man, and Cybernetics Vol. SMC-15, No2 — March/April 1985Google Scholar
  7. [7]
    ZADEH L.A. — 1965 Fuzzy Sets. Information and Control, no 8, pp 338–353Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • O. Bobrowicz
    • 1
  • Choulet C. 
    • 1
  • Haurat A. 
    • 1
    • 2
  • Sandoz F. 
    • 1
  • Tebaa M. 
    • 1
  1. 1.Equipe Logiciels pour la Productique Institut de Productique — LABBesançonFrance
  2. 2.Laboratoire Logiciels pour la ProductiqueUniversité de SavoieAnnecy CedexFrance

Personalised recommendations