Advertisement

Conditional events with vague information in expert systems

  • Giulianella Coletti
  • Angelo Gilio
  • Romano Scozzafava
2. Probabilistic Methods
Part of the Lecture Notes in Computer Science book series (LNCS, volume 521)

Abstract

Ad hoc techniques and inference methods used in expert systems are often logically inconsistent. On the other hand, among properties and assertions concerning handling of uncertainty, those which turns out to be well founded can be in general easily deduced from probability laws. Relying on the general concept of event as a proposition and starting from a few conditional events of initial interest, a gradual and coherent assignment of conditional probabilities is possible by resorting to de Finetti's theory of coherent extension of subjective probability. Moreover, even when numerical probabilities can be easily assessed, a more general approach is obtained introducing an ordering among conditional events by means of a coherent qualitative probability.

Key-words

Coherence numerical probability qualitative probability uncertainty in expert systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams E. (1975), The Logic of Conditionals, Dordrecht, D. Reidel.Google Scholar
  2. Barigelli B., Scozzafava R. (1984), Remarks on the role of conditional probability in data exploration, Statistics and Probability Letters 2, 15–18.CrossRefGoogle Scholar
  3. Bruno G., Gilio A. (1980), Applicazione del metodo del simplesso al teorema fondamentale per le probabilita` nella concezione soggettiva, Statistica 40, 337–344.Google Scholar
  4. Bruno G., Gilio A. (1985), Confronto fra eventi condizionati di probabilita` nulla nell'inferenza statistica bayesiana, Rivista di Matematica per le Scienze Economiche e Sociali 8, 141–152.CrossRefGoogle Scholar
  5. Coletti G. (1990), Coherent qualitative probability, Journal of Mathematical Psychology 34, 297–310.CrossRefGoogle Scholar
  6. Coletti G., Gilio A., Scozzafava R. (1990), Coherent qualitative probability and uncertainty in Artificial Intelligence, 8th International Congress of Cybernetics and Systems, New York (to appear).Google Scholar
  7. De Finetti B. (1970), Teoria delle probabilita`, Torino, Einaudi.Google Scholar
  8. De Finetti B. (1972), Probability, Induction and Statistics, New York, Wiley.Google Scholar
  9. Dubois D., Prade H. (1988), Conditioning in possibility and evidence theories — A logical viewpoint, in Uncertainty and Intelligent Systems (Bouchon-Meunier B., Saitta L., Yager R.R., eds.), Lecture Notes in Computer Science # 313, Springer Verlag, 401–408.Google Scholar
  10. Gilio A. (1990), Criterio di penalizzazione e condizioni di coerenza nella valutazione soggettiva della probabilita`, Bollettino Unione Matematica Italiana (7) 4-B, 645–660.Google Scholar
  11. Gilio A., Scozzafava R. (1988), Le probabilita` condizionate coerenti nei sistemi esperti, in Atti delle giornate AIRO su Ricerca Operativa e Intelligenza Artificiale, Pisa, Centro di Ricerca IBM, 317–330.Google Scholar
  12. Goodman I.R., Nguyen H.T. (1988), Conditional objects and the modeling of uncertainties, in Fuzzy Computing (Gupta M., Yamakawa T., eds.), Amsterdam, North Holland, 119–138.Google Scholar
  13. Nilsson, N.J. (1986), Probabilistic Logic, Artificial Intelligence 28, 71–87.CrossRefGoogle Scholar
  14. Pearl J. (1988), Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, San Mateo (California, USA), Morgan Kaufmann.Google Scholar
  15. Schay G. (1968), An Algebra of Conditional Events, Journal of Mathematical Analysis and Applications 24, 334–344.CrossRefGoogle Scholar
  16. Scozzafava R. (1980), Bayesian Inference and Inductive ‘Logic', Scientia, 115, 47–53.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Giulianella Coletti
    • 1
  • Angelo Gilio
    • 2
  • Romano Scozzafava
    • 2
  1. 1.Dipartimento di MatematicaUniversita` di PerugiaPerugiaItaly
  2. 2.Dipartimento di Metodi e Modelli MatematiciUniversita` "La Sapienza"RomaItaly

Personalised recommendations