Advertisement

New lower bounds on nonlinearity and a class of highly nonlinear functions

  • Xian-Mo Zhang
  • Yuliang Zheng
Cryptographic Functions And Ciphers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1270)

Abstract

Highly nonlinear Boolean functions occupy an important position in the design of secure block as well as stream ciphers. This paper proves two new lower bounds on the nonlinearity of Boolean functions. Based on the study of these new lower bounds, we introduce a class of highly nonlinear Boolean functions on odd dimensional spaces and show examples of such functions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. M. Adams and S. E. Tavares. Generating and counting binary bent sequences. IEEE Transactions on Information Theory, IT-36 No. 5:1170–1173, 1990.CrossRefGoogle Scholar
  2. 2.
    K. G. Beauchamp. Applications of Walsh and Related Functions with an Introduction to Sequency Functions. Microelectronics and Signal Processing. Academic Press, London, New York, Tokyo, 1984.Google Scholar
  3. 3.
    Claude Carlet. Partially-bent functions. Designs, Codes and Cryptography, 3:135–145, 1993.Google Scholar
  4. 4.
    G. D. Cohen, M. G. Karpovsky, Jr. H. F. Mattson, and J. R. Schatz. Covering radius — survey and recent results. IEEE Transactions on Information Theory, IT-31(3):328–343, 1985.CrossRefGoogle Scholar
  5. 5.
    J. F. Dillon. A survey of bent functions. The NSA Technical Journal, pages 191–215, 1972. (unclassified).Google Scholar
  6. 6.
    C. Ding, G. Xiao, and W. Shan. The Stability Theory of Stream Ciphers, volume 561 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Heidelberg, New York, 1991.Google Scholar
  7. 7.
    F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes. North-Holland, Amsterdam, New York, Oxford, 1978.Google Scholar
  8. 8.
    M. Matsui. Linear cryptanalysis method for DES cipher. In Advances in Cryptology — EUROCRYPT'93, volume 765, Lecture Notes in Computer Science, pages 386–397. Springer-Verlag, Berlin, Heidelberg, New York, 1994.Google Scholar
  9. 9.
    B. Preneel, W. V. Leekwijck, L. V. Linden, R. Govaerts, and J. Vandewalle. Propagation characteristics of boolean functions. In Advances in Cryptology — EUROCRYPT'90, volume 437, Lecture Notes in Computer Science, pages 155–165. Springer-Verlag, Berlin, Heidelberg, New York, 1991.Google Scholar
  10. 10.
    O. S. Rothaus. On “bent” functions. Journal of Combinatorial Theory, Ser. A, 20:300–305, 1976.Google Scholar
  11. 11.
    J. Seberry, X. M. Zhang, and Y. Zheng. Nonlinearity and propagation characteristics of balanced boolean functions. Information and Computation, 119(1):1–13, 1995.CrossRefGoogle Scholar
  12. 12.
    T. Siegenthaler. Correlation-immunity of nonlinear combining functions for cryptographic applications. IEEE Transactions on Information Theory, IT-30 No. 5:776–779, 1984.CrossRefGoogle Scholar
  13. 13.
    H. Tanaka and T. Kaneko. A linear attack to the random generator by non linear combiner. In Proceedings of 1996 IEEE International Symposium on Information Theory and Its Applications, volume 1, pages 331–334, Victoria, B.C., Canada, September 1996.Google Scholar
  14. 14.
    R. Yarlagadda and J. E. Hershey. Analysis and synthesis of bent sequences. IEE Proceedings (Part E), 136:112–123, 1989.Google Scholar
  15. 15.
    X. M. Zhang and Y. Zheng. GAC — the criterion for global avalanche characteristics of cryptographic functions. Journal of Universal Computer Science, 1(5):316–333, 1995. (available at http://hgiicm.tu-graz.ac.at/).Google Scholar
  16. 16.
    X. M. Zhang and Y. Zheng. Auto-correlations and new bounds on the nonlinearity of boolean functions. In Advances in Cryptology — EUROCRYPT'96, volume 1070, Lecture Notes in Computer Science, pages 294–306. Springer-Verlag, Berlin, Heidelberg, New York, 1996.Google Scholar
  17. 17.
    X. M. Zhang and Y. Zheng. Characterizing the structures of cryptographic functions satisfying the propagation criterion for almost all vectors. Design, Codes and Cryptography, 7(1/2):111–134, 1996. special issue dedicated to Gus Simmons.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Xian-Mo Zhang
    • 1
  • Yuliang Zheng
    • 2
  1. 1.The University of WollongongWollongongAustralia
  2. 2.Monash UniversityFrankston, MelbourneAustralia

Personalised recommendations