Reasoning with type definitions

  • M. Leclére
Formal Reasoning
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1257)


This article presents an extension of the basic model of conceptual graphs: the introduction of type definitions. We choose to consider definitions as sufficient and necessary conditions to belong to a type. We extend the specialization/generalization relation on conceptual graphs to take advantage of these definitions. Type contractions and type expansions are clearly defined. We establish the correspondence with projection by use of the atomic form of conceptual graphs. Finally, we give a logical interpretation of type definitions and prove than the correspondence between logical deduction and generalization relation is maintained.


type definitions contraction expansion atomic form projection logical interpretation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [CC81]
    G. Chaty and M. Chein. Réduction de graphes et systémes de Church-Rosser. R.A.I.R.O., 15(2):109–117, 1981.Google Scholar
  2. [CL94]
    M. Chein and M. Leclère. A cooperative program for the construction of a concept type lattice. In Supplement Proceedings of the Second International Conference on Conceptual Structures, pages 16–30, College Park, Maryland, USA, 1994.Google Scholar
  3. [CM92]
    M. Chein and M.L. Mugnier. Conceptual graphs: fundamental notions. Revue d'Intelligence Artificielle, 6(4):365–406, 1992.Google Scholar
  4. [Hue80]
    G. Huet. Confluent reductions: Abstract properties and applications to term rewriting systems. J.A.C.M., 27:797–821, 1980.Google Scholar
  5. [Lec95]
    M. Leclère. Le niveau terminologique du modèle des graphes conceptuels: construction et exploitation. PhD thesis, Université Montpellier 2, 1995.Google Scholar
  6. [Lec96]
    M. Leclère. Raisonner avec des définitions de types dans le modèle des graphes conceptuels. Rapport de recherche 143, IRIN, Nantes, France, Novembre 1996.Google Scholar
  7. [Lip82]
    T. Lipkis. A kl-one classifier. In J.G. Schmolze and R.J. Brachman, editors, Proceedings of the 1981 KL-ONE Workshop, pages 126–143, Jackson, New Hampshire, 1982. The proceedings have been published as BBN Report No. 4842 and Fairchild Technical Report No. 618.Google Scholar
  8. [MC96]
    M.-L. Mugnier and M. Chein. Représenter des connaissances et raisonner avec des graphes. Revue d'Intelligence Artificielle, 10(1):7–56, 1996.Google Scholar
  9. [Sow84]
    J.F. Sowa. Conceptual Structures — Information Processing in Mind and Machine. Addison-Wesley, Reading, Massachusetts, 1984.Google Scholar
  10. [WS92]
    W.A. Woods and J.G. Schmolze. The kl-one family. In F. Lehmann, editor, Semantic Networks in Artificial Intelligence, pages 133–177, Pergamon Press, Oxford, 1992.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • M. Leclére
    • 1
  1. 1.IRINIUT de NantesNantes cedex 03France

Personalised recommendations