Skip to main content

The organisation of cardiovascular neurons in the spinal cord

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology, Volume 110

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 110))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aars H, Akre S (1970) Reflex changes in sympathetic activity and arterial blood pressure evoked by afferent stimulation of the renal nerve. Acta Physiol Scand 78:184–188

    Google Scholar 

  • Abrahams VC, Hilton SM, Zbrozyna AW (1964) The role of active muscle vasodilation in the alerting stage of the defence reaction. J Physiol (Lond) 171:189–202

    Google Scholar 

  • Adair JR, Hamilton BL, Scappaticci KA, Helke CJ, Gillis RA (1977) Cardiovascular responses to electrical stimulation of the medullary raphe area of the cat. Brain Res 128:141–145

    Google Scholar 

  • Adams PR, Brown DA, Constanti A (1982) M-currents and other potassium currents in bullfrog sympathetic neurones. J Physiol (Lond) 330:537–572

    Google Scholar 

  • Adrian ED, Bronk DW, Phillips G (1932) Discharges in mammalian sympathetic nerves. J Physiol (Lond) 74:115–133

    Google Scholar 

  • Alexander RS (1945) The effects of blood flow and anoxia on spinal cardiovascular centres. Am J Physiol 143:698–708

    Google Scholar 

  • Alexander RS (1946) Tonic and reflex functions of medullary sympathetic cardiovascular centres. J Neurophysiol 9:205–217

    Google Scholar 

  • Amendt K, Czachurski J, Dembowsky K, Seller H (1979) Bulbospinal projections to the intermediolateral cell column: a neuroanatomical study. J Auton Nerv Syst 1:103–117

    Google Scholar 

  • Ammons WS (1986) Renal afferent input to thoracolumbar neurones of the cat. Am J Physiol 250:R435–R443

    Google Scholar 

  • Anderson EG, Shibuya T (1966) The effects of 5-hydroxytryptophan and L-tryptophan on spinal synaptic activity. J Pharmacol Exp Ther 153:352–360

    Google Scholar 

  • Andersson B, Kenney RA, Neil E (1950) The role of the chemoreceptor of the carotid and aortic regions in the production of Mayer waves. Acta Physiol Scand 20:203–220

    Google Scholar 

  • Andrade R, Aghajanian GK (1982) Single cell activity in the noradrenergic A5 region. Responses to peripheral manipulations of blood pressure. Brain Res 242:125–135

    Google Scholar 

  • Angell-James JE, Daly, M de Burgh (1969) Cardiovascular responses in asphyxia: role of arterial chemoreceptors and the modification of their effects by a pulmonary vagal inflation reflex. J Physiol (Lond) 201:87–104

    Google Scholar 

  • Aprison MH, Shank RP, Davidoff RA (1969) A comparison of the concentration of glycine, a transmitter suspect, in different areas of the brain and spinal cord in seven different vertebrates. Comp Biochem Physiol 28:1345–1355

    Google Scholar 

  • Ardell JL, Barman SM, Gebber GL (1982) Sympathetic nerve discharge in chronic spinal cat. Am J Physiol 243:H463–H470

    Google Scholar 

  • Armour JA (1973) Physiological behavior of thoracic cardiovascular receptors. Am J Physiol 225:177–185

    Google Scholar 

  • Armstrong GG, Irby LS (1962) Arterial blood pressure waves in the absence of functioning aortic and carotid chemoreceptors. Am J Physiol 202:963–966

    Google Scholar 

  • Armstrong WE, Warach S, Hatton GI, McNeill TH (1980) Subnuclei in the rat hypothalamic paraventricular nucleus: a cytoarchitectural, horseradish peroxidase and immunocytochemical study. Neuroscience 5:1931–1958

    Google Scholar 

  • Astrom A, Crafoord J (1967) Afferent activity recorded in the kidney nerves of rat. Acta Physiol Scand 70:10–15

    Google Scholar 

  • Astrom A, Crafoord J (1968) Afferent and efferent activity in the renal nerves of cats. Acta Physiol Scand 74:69–78

    Google Scholar 

  • Backman SB, Henry JL (1983a) Effects of GABA and glycine on sympathetic preganglionic neurons in the upper thoracic intermediolateral nucleus of the cat. Brain Res 277:365–369

    Google Scholar 

  • Backman SB, Henry JL (1983b) Effects of glutamate and asparate on sympathetic preganglionic neurons in the upper thoracic intermediolateral nucleus of the cat. Brain Res 277:370–374

    Google Scholar 

  • Backman SB, Henry JL (1984a) Effects of oxytocin and vasopressin on thoracic sympathetic preganglionic neurones in the cat. Brain Res Bull 13:679–684

    Google Scholar 

  • Backman SB, Henry JL (1984b) Effects of substance P and thyrotrophin releasing hormone on sympathetic preganglionic neurones in the upper thoracic intermediolateral nucleus of the cat. Can J Physiol Pharmacol 62:248–251

    Google Scholar 

  • Bacon SJ, Smith AD (1986) 5-hydroxytryptamine immunoreactive boutons in synaptic contact with identified sympathetic preganglionic neurones in the rat spinal cord. Neurosci Lett [Suppl] 24:S7

    Google Scholar 

  • Bahr R, Bartel B, Blumberg H, Janig W (1986a) Functional characterisation of preganglionic neurones projecting in the lumbar splanchnic nerves: neurones regulating motility. J Auton Nerv Syst 15:109–130

    Google Scholar 

  • Bahr R, Bartel B, Blumberg H, Janig W (1986b) Functional characterisation of preganglionic neurones projecting in the lumbar splanchnic nerves: vasoconstrictor neurones. J Auton Nerv Syst 15:130–140

    Google Scholar 

  • Bahr R, Bartel B, Blumberg H (1986c) Functional characterisation of preganglionic neurones projecting in the lumbar splanchnic nerves: secondary functional properties of lumbar visceral preganglionic neurones. J Auton Nerv Syst 15:141–152

    Google Scholar 

  • Bainton CR, Richter DW, Seller H, Ballantyne D, Klein JP (1985) Respiratory modulation of sympathetic activity. J Auton Nerv Syst 12:77–90

    Google Scholar 

  • Baker RG, Anderson EG (1970) The effects of 1-3,4-dihydroxy-phenylamine on spinal reflex activity. J Pharmacol Exp Ther 173:212–223

    Google Scholar 

  • Barman SM, Gebber GL (1976) Basis for synchronization of sympathetic and phrenic nerve discharges. Am J Physiol 231:1601–1607

    Google Scholar 

  • Barman SM, Gebber GL (1978) Tonic sympathoinhibition in the baroreceptor denervated cat. Proc Soc Exp Biol Med 157:648–655

    Google Scholar 

  • Barman SM, Gebber GL (1980) Sympathetic nerve rhythm of brain stem origin. Am J Physiol 239:R42–R47

    Google Scholar 

  • Barman SM, Gebber GL (1984) Spinal interneurones with sympathetic nerve activity. Am J Physiol 247:R761–R767

    Google Scholar 

  • Barman SM, Gebber GL (1985) Axonal projection patterns of ventrolateral medullospinal sympatho-excitatory neurones. J Neurophysiol 53:1551–1556

    Google Scholar 

  • Barman SM, Wurster RD (1978) Interactions of decending spinal sympathetic pathways and afferent nerves. Am J Physiol 234:H223–H229

    Google Scholar 

  • Baron R, Janig W, McLachlan EM (1985) The afferent and sympathetic components of the lumbar spinal outflow to the colon and pelvic organs in the cat. III. The colonic nerves, incorporating an analysis of the components of the whole lumbar prevertebral outflow. J Comp Neurol 238:158–167

    Google Scholar 

  • Bartel B, Blumberg H, Janig W (1986) Discharge patterns of motility-regulating neurons projecting in the lumbar splanchnic nerves to visceral stimuli in spinal cats. J Auton Nerv Syst 15:153–163

    Google Scholar 

  • Basbaum AI, Fields HL (1979) The origin of descending pathways in the dorsolateral funiculus of the spinal cord of cat and rat: further studies on the anatomy of pain modulation. J Comp Neurol 187:513–532

    Google Scholar 

  • Basbaum AI, Clanton CH, Fields HL (1978) Three bulbospinal pathways from the rostral medulla of the cat: an autoradiographic study of pain modulating systems. J Comp Neurol 178:209–224

    Google Scholar 

  • Beacham WS, Kunze DL (1969) Renal receptors evoking a spinal vasomotor reflex. J Physiol (Lond) 201:73–85

    Google Scholar 

  • Beacham WS, Perl ER (1964a) Background and reflex discharge of sympathetic preganglionic neurones in the spinal cat. J Physiol (Lond) 172:400–416

    Google Scholar 

  • Beacham WS, Perl ER (1964b) Characteristics of a spinal sympathetic reflex. J Physiol (Lond) 173:431–448

    Google Scholar 

  • Beattie J, Brow GR, Lang CNH (1930) Physiological and anatomical evidence for the existence of nerve tracts connecting the hypothalamus with spinal sympathetic centres. Proc R Soc Lond [Biol] 105:253–275

    Google Scholar 

  • Bennett JA, Goodchild CS, Kidd C, McWilliam PN (1986) The location and characteristics of sympathetic preganglionic neurones in the lower thoracic spinal cord of dog and cat. J Exp Physiol 71:79–92

    Google Scholar 

  • Berger AJ (1979) Phrenic motoneurones in the cat: subpopulations and nature of respiratory drive potentials. J Neurophysiol 42:76–90

    Google Scholar 

  • Bernthal PJ, Koss MC (1979) A spinal sympatho-inhibitory action of chlorpromazine and haloperidol in the cat. Neuropharm 18:697–700

    Google Scholar 

  • Bezanilla D, Armstrong CM (1972) Negative conductance by entry of sodium and cesium ions into the potassium channels of squid axons. J Gen Physiol 60:588–608

    Google Scholar 

  • Bianchi AL (1971) Localisation et étude des neurones respiratoires bulbaires. Mise en jeu antidromique par stimulation spinale ou vagale. J Physiol (Paris) 63:5–40

    Google Scholar 

  • Bianchi AL, Barillot JC (1975) Activity of medullary respiratory neurones during reflexes from the lungs in cats. Respir Physiol 25:335–352

    Google Scholar 

  • Bishop GH, Heinbecker P (1932) A functional analysis of the cervical sympathetic nerve supply to the eye. Am J Physiol 100:519–532

    Google Scholar 

  • Björklund A, Skagerberg G (1979) Evidence for a major spinal cord projection from the diencephalic AII dopamine cell group in the rat using transmitter-specific retrograde tracing. Brain Res 177:170–175

    Google Scholar 

  • Blackman JG, Purves RD (1969) Intracellular recordings from the ganglia of the thoracic sympathetic chain of the guinea pig. J Physiol (Lond) 203:173–198

    Google Scholar 

  • Blessing WW, Chalmers JP (1979) Direct projections of catecholamine (presumably dopamine) containing neurones from hypothalamus to spinal cord. Neurosci Lett 11:35–40

    Google Scholar 

  • Blessing WW, Reis DJ (1982) Inhibitory cardiovascular function of the caudal ventrolateral medulla of the rabbit. Brain Res 253:61–71

    Google Scholar 

  • Blessing WW, Reis DJ (1983) Evidence that GABA and glycine like inputs inhibit vasodepressor neurones in the caudal ventrolateral medulla of the rabbit. Neurosci Lett 37:57–62

    Google Scholar 

  • Blessing WW, Willoughby JO (1985) Tetrodotoxin elevates arterial pressure but not plasma vasopressin when injected into the caudal ventrolateral medulla of the rabbit. Neurosci Lett 53:259–262

    Google Scholar 

  • Blessing WW, Chalmers JP, Howe PRC (1978) Distribution of catecholamine containing cell bodies in the rabbit central nervous system. J Comp Neurol 179:407–424

    Google Scholar 

  • Blessing WW, Goodchild AK, Dampney RAL, Chalmers JP (1981) Cell croups in the lower brainstem of the rabbit projecting to the spinal cord, with special reference to catecholamine containing neurones. Brain Res 221:35–55

    Google Scholar 

  • Bobillier P, Sequin S, Pititjean F, Salvert D, Touret M, Jouvet M (1976) The raphi nuclei of the cat brainstem: a topographic atlas of their afferent projections as revealed by autoradiography. Brain Res 113:449–486

    Google Scholar 

  • Bok ST (1928) Das Rückenmark. In: Von Mollendorf W (ed) Handbuch der mikroskopischen Anatomie des Menschen, vol 4. Springer, Berlin Heidelberg New York, pp 478–578

    Google Scholar 

  • Bowker RM, Steinbusch HWM, Coulter JD (1981) Serotonergic and peptidergic projections to spinal cord demonstrated by a combined retrograte HRP histochemistry and immunocytochemical staining method. Brain Res 211:412–417

    Google Scholar 

  • Bowker RM, Westlund KN, Sullivan MC, Coulter JD (1982a) Organisation of decending serotonin projections to the spinal cord. Prog Brain Res 57:239–265

    Google Scholar 

  • Bowker RM, Westlund KN, Sullivan MC, Wilber JF, Coulter JD (1982b) Transmitters of raphespinal complex: immunocytochemical studies. Peptides (Fayetteville) 3:291–298

    Google Scholar 

  • Bowker RM, Westlund KN, Sullivan MC, Wilber JF, Coulter JD (1983) Descending serotonergic peptidergic and cholinergic pathways from the raphe nuclei: a multiple transmitter complex. Brain Res 288:33–48

    Google Scholar 

  • Bradley PB, Engel G, Feniuk W, Fozard JR, Humphrey PPA, Middlemiss DN, Mylecharane EJ, Richardson BP, Saxena PR (1986) Proposals for the classification and nomenclature of functional receptors for 5-hydroxytrypamine. Neuropharmacology 25:563–576

    Google Scholar 

  • Brimble MJ, Wallis DI, Woodward B (1972) Facilitation and inhibition of cells groups within the superior cervical ganglion of the rabbit. J Physiol (Lond) 226:629–652

    Google Scholar 

  • Brock LG, Coombs JS, Eccles JC (1952) The recording of potentials from motoneurones with an intracellular electrode. J Physiol (Lond) 117:431–460

    Google Scholar 

  • Brodal A (1956) The reticular formation of the brainstem — anatomical aspects and functional correlations. Thomas, Springfield, I11

    Google Scholar 

  • Brodwick MS, Junge D (1972) Post stimulus hyperpolarisation and slow potassium conductance increase in Aplysia giant neurone. J Physiol (Lond) 223:549–570

    Google Scholar 

  • Bronk DW, Ferguson LK, Margaria R, Solandt DY (1936) The activity of the cardiac sympathetic centers. Am J Physiol 117:237–249

    Google Scholar 

  • Broughton R (1972) Phylogenetic evolution of sleep systems. In: Chase MH (ed) The sleeping brain. Brain information service, Brain Research Institute, University of California, Los Angeles, pp 2–7 (Perspectives in the brain sciences, no. 1)

    Google Scholar 

  • Brown AG (1976) The spinocervical tract: organisation and neuronal morphology. In: Zotterman Y (ed) International symposium on sensory functions of the skin in primates. Pergamon, Oxford, pp 91–103

    Google Scholar 

  • Brown DL, Guyenet PG (1984) Cardiovascular neurones of the brain stem with projections to the spinal cord. Am J Physiol 247:R1009–R1016

    Google Scholar 

  • Brown DL, Guyenet PG (1985) Electrophysical study of cardiovascular neurones in the rostral ventrolateral medulla in rats. Circ Res 56:359–369

    Google Scholar 

  • Bryan RN, Trevino DL, Coulter JD, Willis WD (1973) Location and somatotopic organisation of the cells of origin of the spinocervical tract. Exp Brain Res 17:177–189

    Google Scholar 

  • Buijs RM (1978) Intra-and extrahypothalamic vasopressin and oxytocin pathways in the rat. Pathways to the limbic system, medulla oblongata and spinal cord. Cell Tissue Res 192:423–435

    Google Scholar 

  • Burnstock G (1983) Recent concepts of chemical communication between excitable cells. In: Osborne NN (ed) Dale's principle and communication between neurones. Pergamon, New York, pp 7–35

    Google Scholar 

  • Byrum CE, Stornetta R, Guyenet PG (1984) Electrophysiological properties of spinally projecting A5 noradrenergic neurones. Brain Res 303:15–29

    Google Scholar 

  • Cabot JB, Wild JM, Cohen DH (1979) Raphe inhibition of sympathetic preganglionic neurones. Science 203:184–186

    Google Scholar 

  • Cabot JB, Reiner A, Bogan N (1982) Avian bulbospinal pathways: anterograde and retrograde studies of cells of origin, funicular trajectories and laminar terminations. Prog Brain Res 57:79–108

    Google Scholar 

  • Calaresu FR, Stella A, Zanchetti A (1976) Haemodynamic responses and renin release during stimulation of afferent renal nerves in the cat. J Physiol (Lond) 255:687–700

    Google Scholar 

  • Calaresu FR, Kim P, Nakamura H, Sato A (1978) Electrophysiological characteristics of renorenal reflexes in the cat. J Physiol (Lond) 283:141–154

    Google Scholar 

  • Calaresu FR, Tobey JC, Hademann SR, Weaver LC (1984) Splenic and renal sympathetic responses to stimulation of splenic receptors in cats. Am J Physiol 247:R856–R865

    Google Scholar 

  • Camerer H, Stroh-Werz M, Krienke B, Langhorst P (1977) Postganglionic sympathetic activity with correlation to heart and central cortical rhythms. Pflugers Arch 370:221–225

    Google Scholar 

  • Caverson, Ciriello J, Calaresu FR (1983) Cardiovascular afferent input to neurons in the ventrolateral medulla projecting to the central autonomic area of the thoracic cord in the cat. Brain Res 274:354–358

    Google Scholar 

  • Cervero F, Connell LA (1984) Distribution of somatic and visceral primary afferent fibres within the thoracic spinal cord of the cat. J Comp Neurol 230:88–98

    Google Scholar 

  • Chalmers JP, Kapoor V, Macrae IM, Minson JB, Pilowsky P, West MJ (1985) New approaches to the study of bulbospinal (B3) serotonergic neurones in the control of blood pressure. J Hypertension 3 [Suppl] 4:S5–S9

    Google Scholar 

  • Charlton CG, Helke CJ (1985) Autoradiographic localisation and characterisation of spinal cord substance P binding sites: high densities in sensory, autonomic, phrenic and Onuf's motor nuclei. J Neurosci 5:1653–1661

    Google Scholar 

  • Chan-Palay V (1979) Combined immunohistochemistry and autoradiography after in vivo injections of monoclonal antibody to substance P and 3H-serotonin: coexistence of two putative transmitters in single raphe cells and fiber plexuses. Anat Embryol (Berl) 156:241–245

    Google Scholar 

  • Chan-Palay V, Jonsson G, Palay SL (1978) Serotonin and substance P coexist in neurones of the rat central nervous system. Proc Natl Acad Sci USA 75:1582–1586

    Google Scholar 

  • Chiang CY (1980) Central inhibition of depressor reflex at spinal level. Brain Res 192:267–271

    Google Scholar 

  • Chiba T, Murata Y (1981) Architecture and synaptic relationships in the intermediolateral nucleus of the thoracic spinal cord of the rat: HRP labelling, catecholamine histochemistry and electromicroscopic studies. J Neurocytol 10:315–329

    Google Scholar 

  • Chung JM, Wurster RD (1975) Localisation of ascending depressor pathways in the cat spinal cord. Fed Proc 34:407

    Google Scholar 

  • Chung JM, Wurster RD (1976) Ascending pressor and depressor pathways in the cat spinal cord. Am J Physiol 231:786–792

    Google Scholar 

  • Chung JM, Chung K, Wurster RD (1975) Sympathetic preganglionic neurones of the cat spinal cord: horseradish peroxidase study. Brain Res 91:126–131

    Google Scholar 

  • Chung JM, Webber CL, Wurster RD (1979a) Ascending spinal pathways for the somato-sympathetic A and C reflexes. Am J Physiol 237:H342–H347

    Google Scholar 

  • Chung K, Chung JM, Lavelle FW, Wurster RD (1979b) Sympathetic preganglionic neurones in the cat spinal cord projecting to the stellate ganglion. J Comp Neurol 185:23–30

    Google Scholar 

  • Chung K, Lavelle FW, Wurster RD (1980) Ultrastructure of HRP identified sympathetic preganglionic neurones in cats. J Comp Neurol 190:147–155

    Google Scholar 

  • Cicardo VH, Garcia JC (1958) Neurogenic arterial hypertension by the cortical-spinal pathway. Arch Int Physiol Biochim 66:309–317

    Google Scholar 

  • Ciriello AC, Kanazawa I (1978) The distribution of substance P immunoreactive fibres in the rat central nervous system. J Comp Neurol 178:129–156

    Google Scholar 

  • Ciriello J, Calaresu FR (1977) Descending hypothalamic pathways with cardiovascular function in the cat: a silver impregnation study. Exp Neurol 57:561–580

    Google Scholar 

  • Clarke J (1851) Researches into the structure of the spinal cord. Philos Trans Soc Lond part 1:607–621

    Google Scholar 

  • Cohen MI, Gootman PM (1969) Spontaneous and evoked oscillations in respiratory and sympathetic discharge. Brain Res 16:265–268

    Google Scholar 

  • Cohen MI, Gootman PM (1970) Periodicities in afferent discharge of splanchnic nerve of the cat. Am J Physiol 218:1092–1101

    Google Scholar 

  • Cohen MI, Gootman PM, Feldman JL (1980) Inhibition of sympathetic discharge by lung inflation. In: Sleight P (ed) Arterial baroreceptors and hypertension. Oxford University Press, Oxford, pp 161–166

    Google Scholar 

  • Colindres RE, Spielman WS, Moss NG, Harrington WW, Gottschalk CW (1980) Functional evidence for reno-renal reflexes in the rat. Am J Physiol 239:F265–F270

    Google Scholar 

  • Commissiong JW, Galli CL, Neff NH (1978) Differentiation of dopaminergic and noradrenergic neurons in rat spinal cord. J Neurochem 30:1095–1099

    Google Scholar 

  • Commissiong JW, Gentleman S, Neff NH (1979) Spinal cord dopaminergic neurons: evidence for an uncrossed nigrospinal pathway. Neuropharmacology 18:565–568

    Google Scholar 

  • Cook WA, Cangiano A (1972) Presynaptic and post synaptic inhibition of spinal motoneurones. J Neurophysiol 35:389–402

    Google Scholar 

  • Coote JH (1964) Properties of spinal autonomic reflex arcs and their comparison with somatic arcs. Ph. D. thesis. Royal Free Hospital School of Medicine, London, UK

    Google Scholar 

  • Coote JH (1978) Somatic sources of afferent input as factors in aberrant autonomic, sensory and motor function. In: Korr IM (ed) The neurobiologic mechanisms in manipulative therapy. Plenum, New York, pp 91–127

    Google Scholar 

  • Coote JH (1980) Bulbospinal baroreceptor inhibitory pathway to sympathetic preganglionic neurones. In: Sleight P (ed) Arterial baroreceptors and hypertension. Oxford University Press, pp 263–267

    Google Scholar 

  • Coote JH (1984) Spinal and supraspinal reflex pathways of cardio-cardiac sympathetic reflexes. Neurosci Lett 46:243–247

    Google Scholar 

  • Coote JH (1985) Noradrenergic projections to the spinal cord and their role in cardiovascular control. J Auton Nerv Syst 14:255–262

    Google Scholar 

  • Coote JH (1986) Peptidergic projections to the spinal cord and blood pressure control. In: Nakamura K (ed) Brain and blood pressure control. Elsevier, Amsterdam, pp 181–186

    Google Scholar 

  • Coote JH (1987) The functional role of noradrenaline and 5-hydroxytryptamine terminals in the thoracic spinal cord. In: Taylor EW (ed) Neurobiology of the cardiorespiratory system. Manchester University Press, Manchester

    Google Scholar 

  • Coote JH, Downman CBB (1965) Comparison of reflex volleys in white ramus and postganglionic pathways. J Physiol (Lond) 181:37–38

    Google Scholar 

  • Coote JH, Downman CBB (1966) Central pathways of some autonomic reflex discharges. J Physiol (Lond) 183:714–729

    Google Scholar 

  • Coote JH, Downman CBB (1969a) Supraspinal control of reflex activity in renal nerves. J Physiol (Lond) 202:147–160

    Google Scholar 

  • Coote JH, Downman CBB (1969b) Supraspinal control of reflex activity in renal nerves. J Physiol (Lond) 202:161–170

    Google Scholar 

  • Coote JH, Macleod VH (1972) The possibility that noradrenaline is a sympathoinhibitory transmitter in the spinal cord. J Physiol (Lond) 225:44–46

    Google Scholar 

  • Coote JH, Macleod VH (1974a) Evidence for the involvement in the baroreceptor reflex of a descending inhibitory pathway. J Physiol (Lond) 241:477–496

    Google Scholar 

  • Coote JH, Macleod VH (1974b) The influence of bulbospinal monoaminergic pathways on sympathetic nerve activity. J Physiol (Lond) 241:453–457

    Google Scholar 

  • Coote JH, Macleod VH (1975) The spinal route of sympatho-inhibitory pathways descending from the medulla oblongata. Pflügers Arch 359:335–347

    Google Scholar 

  • Coote JH, Macleod VH (1977) The effect of intraspinal microinjections of 6-hydroxydopamine on the inhibitory influence exerted on spinal sympathetic activity by the baroreceptors. Pflügers Arch 371:271–277

    Google Scholar 

  • Coote JH, Macleod VH (1984) Estimation of conduction velocity in bulbospinal excitatory pathways to sympathetic outflows in cat spinal cord. Brain Res 311:97–107

    Google Scholar 

  • Coote JH, Perez-Gonzales JF (1970) The response of some sympathetic neurones to volleys in various afferent nerves. J Physiol (Lond) 208:261–278

    Google Scholar 

  • Coote JH, Sato A (1978) Supraspinal regulation of spinal reflex discharge into cardiac sympathetic nerves. Brain Res 142:425–437

    Google Scholar 

  • Coote JH, Suter C (1985) Excitatory actions of angiotensin II on sympathetic preganglionic neurones in the rat. J Physiol (Lond) 367:49

    Google Scholar 

  • Coote JH, Westbury DR (1974) The influence of the carotid sinus baroreceptors on activity in single sympathetic preganglionic neurones. J Physiol (Lond) 241:22–23

    Google Scholar 

  • Coote JH, Westbury DR (1979a) Intracellular recordings from sympathetic preganglionic neurones. Neurosci Lett 15:171–175

    Google Scholar 

  • Coote JH, Westbury DR (1979b) Functional grouping of sympathetic preganglionic neurones in the third thoracic segment of the spinal cord. Brain Res 179:367–372

    Google Scholar 

  • Coote JH, Downman CBB, Prout BJ (1962) Threshold mapping of medullary centres in the anaesthetised cat. J Physiol (Lond) 162:12

    Google Scholar 

  • Coote JH, Downman CBB, Weber WV (1969) Reflex discharges into thoracic white rami elicited by somatic and visceral afferent excitation. J Physiol (Lond) 202:147–160

    Google Scholar 

  • Coote JH, Macleod VH, Martin IL (1978) A search for the role of bulbospinal tryptaminergic neurones in the control of sympathetic activity. Pflügers Arch 379:109–116

    Google Scholar 

  • Coote JH, Fleetwood-Walker SM, Mitchell PR (1979) Catecholamine receptors in thoracic spinal cord. Br J Pharmacol 68:137

    Google Scholar 

  • Coote JH, Macleod VH, Fleetwood-Walker SM, Gilbey MP (1981 a) The response of individual sympathetic preganglionic neurones to microelectrophoretically applied endogenous monoamines. Brain Res 215:135–145

    Google Scholar 

  • Coote JH, Macleod VH, Fleetwood-Walker SM, Gilbey MP (1981 b) Baroreceptor inhibition of sympathetic activity at a spinal site. Brain Res 220:81–93

    Google Scholar 

  • Crofton JT, Rockhold RW, Share L, Wang BC, Horovitz ZP, Manning M, Sawyer WH (1981) Effect of intracerebroventricular captopril on vasopressin and blood pressure in spontaneously hypertensive rats. Hypertension 11:71–74

    Google Scholar 

  • Crutcher KA, Bingham WG (1978) Descending monoaminergic pathways in the primate spinal cord. Am J Anat 153:159–164

    Google Scholar 

  • Cummings JF (1969) Thoracolumbar preganglionic neurones and adrenal innervation in the dog. Acta Anat (Basel) 73:27–37

    Google Scholar 

  • Dahlström A, Fuxe K (1964) Evidence for the existance of monoamine containing neurones in the central nervous system. I. Demonstration of monoamines in the cell bodies of brainstem neurones. Acta Physiol Scand 62 [Suppl 232]:1–55

    Google Scholar 

  • Dahlström A, Fuxe K (1965) Evidence for the existence of monoamine containing neurones in the CNS. II. Experimentally induced changes in the intraneuronal amine levels of the bulbospinal neurone system. Acta Physiol Scand 64 [Suppl 247]:1–36

    Google Scholar 

  • Dalsgaard CJ, Elfvin LG (1979) Spinal origin of preganglionic fibres projecting onto the superior cervical and inferior mesenteric ganglion of the guinea pig as demonstrated by the horseradish peroxidase technique. Brain Res 172:139–143

    Google Scholar 

  • Dalsgaard CJ, Elfvin LG (1981) The distribution of the sympathetic pregnanglionic neurones projecting onto the stellate ganglion of the guinea pig. A horseradish peroxidasse study. J Auton Nerv Syst 4:327–337

    Google Scholar 

  • Daly, M de Burgh (1986) Interactions between respiration and circulation. In: Handbook of physiology. The respiratory system. Vol II. Cherniack NS, Widdicombe JG (eds) American Physiological Society Williams and Wilkins. Baltimore, pp 529–594

    Google Scholar 

  • Daly, M de Burgh, Robinson BH (1968) An analysis of the reflex systemic vasodilator response elicited by lung inflation in the dog. J Physiol (Lond) 195:387–406

    Google Scholar 

  • Daly, M de Burgh, Scott MJ (1962) An analysis of the primary cardiovascular reflex of stimulation of the carotid body chemoreceptors in the dog. J Physiol (Lond) 162:555–573

    Google Scholar 

  • Daly, M de Burgh, Hazzledine JL, Ungar A (1967) The reflex effects of alterations in the lung volume on systemic vascular resistance in the dog. J Physiol (Lond) 188:331–351

    Google Scholar 

  • Daly, M de Burgh, Litherland AS, Wood LM (1983) The reflex effects of inflation of the lungs on heart rate and hind limb vascular resistance in the cat. IRCS Med Sci Libr Compend 11:859–860

    Google Scholar 

  • Daly, M de Burgh, Ward J, Wood LM (1984) Comparison of the effects of lungs inflation on the hind limb vascular responses to stimulation of the carotid chemoreceptors and baroreceptors and to urinary bladder distension in the anaesthetised dog. J Physiol (Lond) 353:115P

    Google Scholar 

  • Dampney RAL, Goodchild AK, Tan E (1985) Vasopressor neurones in the rostral ventrolateral medulla of the rabbit. J Auton Nerv Syst 14:239–254

    Google Scholar 

  • Dampney RAL, McAllen RM (1986) Functional specificity of ventral medullary pre-sympathetic neurones in the cat. J Physiol (Lond) 377:58P

    Google Scholar 

  • Darlington DN, Ward DG (1985 a) Rostral pontine and caudal mesencephalic control of arterial pressure and iliac, celiac and renal vascular resistance I. Anatomic regions. Brain Res 361:284–300

    Google Scholar 

  • Darlington DN, Ward DG (1985 b) Rostral pontine and caudal mesencephalic control of arterial pressure and iliac, celiac and renal vascular resistance II. Separate control and topographic organisation. Brain Res 361:301–308

    Google Scholar 

  • Dashwood MR, Gilbey MP, Spyer KM (1985) The localisation of adrenoreceptors and opiate receptors in regions of the cat central nervous system involved in cardiovascular control. Neuroscience 15:537–551

    Google Scholar 

  • Davis AL, McCloskey DI, Potter EK (1977) Respiratory modulation of baroreceptor and chemoreceptor reflexes affecting heart rate through the sympathetic nervous system. J Physiol (Lond) 272:691–703

    Google Scholar 

  • Davis BM, Cabot JB (1984) Substance P containing pathway to avian sympathetic preganglionic neurones: evidence for a major spinal-spinal circuitry. J Neurosci Methods 4:2145–2159

    Google Scholar 

  • Davis BM, Krause JE, McKelvy JF, Cabot JB (1984) Effects of spinal lesions on substance P levels in the rat sympathetic preganglionic cell column: evidence for local spinal regulation. Neuroscience 13:1311–1326

    Google Scholar 

  • Day TA, Ro A, Renaud LP (1983) Depressor area within caudal ventrolateral medulla of the rat does not correspond to the A1 catecholamine cell group. Brain Res 279:299–302

    Google Scholar 

  • Dean C, Coote JH (1986) A ventromedullary relay involved in the hypothalamus and chemoreceptor activation of sympathetic preganglionic neurones to skeletal muscle. Brain Res 377:279–285

    Google Scholar 

  • DeGroat WC (1976) Mechanisms underlying recurrent inhibition in the sacral parasympathetic outflow to the urinary bladder. J Physiol (Lond) 257:503–513

    Google Scholar 

  • DeGroat WC, Lalley PM (1973) Depression by p-methoxyphenylethylamine of sympathetic reflex firing elicited by electrical stimulation of the carotid sinus nerve or pelvic nerve. Brain Res 64:460–465

    Google Scholar 

  • DeGroat WC, Lalley PM (1974) Reflex sympathetic firing in response to electrical stimulation of the carotid sinus nerve in the cat. Brain Res 80:14–40

    Google Scholar 

  • DeGroat WC, Ryall RW (1967) An exitatory action of 5-hydroxytryptamine on sympathetic pregnanglionic neurones. Exp Brain Res 3:299–303

    Google Scholar 

  • DeGroat WC, Ryall RW (1968) The identification and characteristics of sacral parasympathetic preganglionic neurones. J Physiol (Lond) 196:563–577

    Google Scholar 

  • DeLanerolle NC, LaMotte CC (1982) The human spinal cord: substance P and methionine-enkephalin immunoreactivity. J Neurosci Methods 2:1369–1386

    Google Scholar 

  • Dembowsky K, Czachurski J, Amendt K, Seller H (1980) Tonic descending inhibition of the spinal somato-sympathetic reflex from the lower brainstem. J Auton Nerv Syst 2:157–182

    Google Scholar 

  • Dembowsky K, Czachurski J, Seller H (1985 a) An intracellular study of the synaptic input to sympathetic pregnanglionic neurones of the third thoracic segment of the cat. J Auton Nerv Syst 13:201–244

    Google Scholar 

  • Dembowsky K, Czachurski J, Seller H (1985 b) Morphology of sympathetic pregnanglionic neurones in the thoracic spinal cord of the cat: an intracellular horseradish peroxidase study. J Comp Neurol 238:453–465

    Google Scholar 

  • Dembowsky K, Czachurski J, Seller H (1986) Three types of sympathetic pregnanglionic neurones with different electrophysiological properties are identified by intracellular recordings in the cat. Pflügers Arch 406:112–120

    Google Scholar 

  • Demirjian CR, Grossman R, Meyer R, Katzman R (1976) The catecholamine pontine cellular groups locus coeruleus, A4, subcoeruleus in the primate Cebus apella. Brain Res 115:395–411

    Google Scholar 

  • Deuschl G, Illert M (1978) Location of lumbar preganglionic sympathetic neurones in the cat. Neurosci Lett 10:49–54

    Google Scholar 

  • Deuschl G, Illert M (1981) Cytoarchitectonic organisation of lumbar preganglionic sympathetic neurones in the cat. J Auton Nerv Syst 3:193–213

    Google Scholar 

  • Deuschl G, Illert M, Aschoff A, Hollander H (1981) Single preganglionic neurones of the cat branch intraspinally and project through different rami communicantes albi. A retrograde double labelling study with fluorescent tracers. Neurosci Lett 21:1–5

    Google Scholar 

  • Diamond J (1968) The activation and distribution of GABA and L-glutamate receptors on goldfish Mauthner neurones: an analysis of dendritic remote inhibition (with appendix by A. F. Huxley) J Physiol (Lond) 194:669–723

    Google Scholar 

  • DiBona GF, Rios LL (1980) Renal nerves in compensatory renal responses to contralateral renal denervation. Am J Physiol 238:F26–F30

    Google Scholar 

  • DiTirro FJ, Ho RH, Martin GF (1981) Immunohistochemical localisation of substance P, somatostatin and methionine-enkephalin in the spinal cord and dorsal root ganglion of the North American opossum, Didelphus virginia. J Comp Physiol 198:351–363

    Google Scholar 

  • Dorokhova MI, Medvedev OS, Reznikova YA, Tsyrlin VA (1974) Some data on the presence of inhibitory vasomotor control at the spinal level. Bull Eksp Biol Med (Rus) 77:3–6

    Google Scholar 

  • Downing SE, Siegel JH (1963) Baroreceptor and chemoreceptor influences on sympathetic discharge to the heart. Am J Physiol 204:471–479

    Google Scholar 

  • Downing SE, Remensnyder JP, Mitchell JH (1962) Cardiovascular responses to hypoxic stimulation of the carotid bodies. Circ Res 10:676–685

    Google Scholar 

  • Dube L, Parent A (1981) The monoamine containing neurones in the avian brain: I. A study of the brainstem of the chicken (Gallus domesticus) by means of fluorescence and acetylcholinesterase histochemistry. J Comp Neurol 196:695–708

    Google Scholar 

  • Dun NJ, Ma RC (1984) Slow non-cholinergic excitatory potentials in neurones of the guinea pig coeliac ganglia. J Physiol (Lond) 351:47–60

    Google Scholar 

  • Earle KM (1952) The tract of Lissauer and its possible relation to the pain pathway. J Comp Neurol 96:93–111

    Google Scholar 

  • Eccles JC (1935) The action potential of the superior cervical ganglion. J Physiol (Lond) 85:179–206

    Google Scholar 

  • Eccles JC (1964) The physiology of nerve cells. Oxford University Press, Oxford

    Google Scholar 

  • Eccles JC, Fatt P, Koketsu K (1954) Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurones. J Physiol (Lond) 126:524–562

    Google Scholar 

  • Eh S, Huan-Ji D (1964) The descending pathways of the bulbar cardiovascular centre. Acta Physiol Sinica 27:108–114

    Google Scholar 

  • Elfvin L (1983) Autonomic ganglia. Wiley, New York

    Google Scholar 

  • Emson PC (1979) Peptides as neurotransmitter candidates in the mammalian CNS. Prog Neurobiol 13:61–116

    Google Scholar 

  • Faden AI, Petras JM (1978) An intraspinal sympathetic preganglionic pathway: anatomic evidence in the dog. Brain Res 144:358–362

    Google Scholar 

  • Fedina L, Katunskii AY, Khayutin VM, Mitsayni A (1966) Responses of renal sympathetic nerves to stimulation of afferent A and C fibres of tibial and mesenterial nerves. Acta Physiol Hung 29:157–176

    Google Scholar 

  • Fedorka L, Lioy F, Trzebski A (1985) Synaptic inhibition of sympathetic preganglionic neurones induced by stimulation of the aortic nerve in the cat. J Physiol (Lond) 360:45P

    Google Scholar 

  • Feldberg W, Guertzenstein PG (1976) Vasodepressor effects obtained by drugs acting on the ventral surface of the brain stem. J Physiol (Lond) 258:337–355

    Google Scholar 

  • Felix D, Akert K (1974) The effects of angiotensin II on neurones of the cat subfornical organ. Brain Res 76:350–353

    Google Scholar 

  • Felix D, Schlegel W (1978) Angiotensin receptive neurones in the subfornical organ. Brain Res 149:107–116

    Google Scholar 

  • Felpel LP, Hoffman RD (1986) Responses of splanchnic driven neurones to substance P and eledoisin related peptides. J Auton Nerv Syst 15:269–274

    Google Scholar 

  • Felten DP, Laities AM, Carpenter MB (1974) Monoamine containing cell bodies in the squirrel monkey brain. Am J Anat 139:153–166

    Google Scholar 

  • Fernandez de Molena A, Perl ER (1965) Sympathetic activity and the systemic circulation in the spinal cat. J Physiol (Lond) 181:82–102

    Google Scholar 

  • Fernandez de Molena A, Kuno M, Perl ER (1965) Antidromically evoked responses from sympathetic preganglionic neurones. J Physiol (Lond) 180:321–335

    Google Scholar 

  • Fields HL, Winter DL (1970) Somato visceral pathway: rapidly conducting fibres in the spinal cord. Science 167:1729–1730

    Google Scholar 

  • Fields HL, Meyer GA, Partridge LD (1970a) Convergence of visceral and somatic input onto spinal neurones. Exp Neurol 26:36–52

    Google Scholar 

  • Fields HL, Partridge LD, Winter DL (1970b) Somatic and visceral receptive field properties of fibres in the ventral quadrant white matter of the cat spinal cord. J Neurophysiol 33:827–837

    Google Scholar 

  • Fleetwood-Walker SM, Coote JH (1981a). The contribution of brainstem catecholamine cell groups to the innervation of the sympathetic lateral cell column. Brain Res 205:141–155

    Google Scholar 

  • Fleetwood-Walker SM, Coote JH (1981b). Contribution of noradrenaline, dopamine and adrenaline-containing axons to the innervation of different regions of the spinal cord of the cat. Brain Res 206:95–106

    Google Scholar 

  • Fleetwood-Walker SM, Coote JH, Gilbey MP (1983) Identification of spinally projecting neurones in the A1 catecholamine cell group of the ventrolateral medulla. Brain Res 273:25–33

    Google Scholar 

  • Folkow B, Johansson B, Oberg B (1958) The stimulation threshold of different sympathetic fibre groups as correlated to their functional differentiation. Acta Physiol Scand 44:146–156

    Google Scholar 

  • Foreman RD, Wurster RD (1973) Localisation and functional characteristics of descending sympathetic spinal pathways. Am J Physiol 225:212–217

    Google Scholar 

  • Foreman RD, Wurster RD (1975) Conduction in descending spinal pathways initiated by somato-sympathetic reflexes. Am J Physiol 228:905–908

    Google Scholar 

  • Foreman RD, Schmidt RF, Willis WD (1977) Convergence of muscle and cutaneous input onto primate spinothalamic tract neurones. Brain Res 124:555–560

    Google Scholar 

  • Forssmann WG (1978) A new somatostatinergic system in the mammalian spinal cord. Neurosci Lett 10:293–297

    Google Scholar 

  • Fozard JR (1984) Neuronal 5-HT receptors in the periphery. Neuropharmacology 23:1473–1486

    Google Scholar 

  • Fransisco LL, Hoversten LG, DiBona GF (1980) Renal nerves in the compensatory adaptation to ureteral occlusion. Am J Physiol 238:F229–F234

    Google Scholar 

  • Franz DN, Madsen PW (1982) Differential sensitivity of four central sympathetic pathways to depression by clonidine. Eur J Pharmacol 78:53–59

    Google Scholar 

  • Franz DN, Evans MH, Perl ER (1966) Characteristics of viscero-sympathetic reflexes in the spinal cat. Am J Physiol 211:1292–1298

    Google Scholar 

  • Franz DN, Hare BD, Neumayr RJ (1975) Reciprocal control of sympathetic preganglionic neurones by monoaminergic bulbospinal pathways and a selective effect of clonidine. In: Milliez P, Safar M (eds) Recent advances in hypertension, vol 1. Boehringer, Ingelheim, pp 85–96

    Google Scholar 

  • Franz DN, Hare BD, Neumayr RJ (1978) Depression of sympathetic preganglionic neurones by clonidine: evidence for stimulation of 5-HT receptors. Clin Exp Hypertens 1:115–140

    Google Scholar 

  • Franz DN, Hare BD, McCloskey KL (1982a) Spinal sympathetic neurones: possible sites of opiate withdrawal suppression by clonidine. Science 215:1643–1645

    Google Scholar 

  • Franz DN, Madsen PW, Peterson RG, Sangdee C (1982b) Functional role of monoaminergic pathways to sympathetic preganglionic neurones. Clin Exp Hypertens [A4] (4,5):543–562

    Google Scholar 

  • Futuro-Neto HA, Coote JH (1982a) Changes in sympathetic activity to heart and blood vessels during desynchronized sleep. Brain Res 252:259–268

    Google Scholar 

  • Futuro-Neto HA, Coote JH (1982b) Desynchronized sleep-like pattern of sympathetic activity elicited by electrical stimulation of sites in the brainstem. Brain Res 252:269–276

    Google Scholar 

  • Fuxe K, Jonsson G (1973) Further mapping of central 5-hydroxytryptamine. Adv Biochem Pharmacol 10:1–12

    Google Scholar 

  • Fuxe K, Ljunggren L (1965) Cellular localisation of monoamines in the upper brainstem of the pigeon. J Comp Neurol 148:61–90

    Google Scholar 

  • Fuxe K, Ganten D, Hokfelt T, Bolme P (1976) Immunohistochemical evidence for the existence of angiotensin II-containing nerve terminals in the brain and spinal cord of the rat. Neurosci Lett 2:229–234

    Google Scholar 

  • Gage PW, Hubbard JI (1966) The origin of the post-tetanic hyperpolarisation of mammalian motor nerve terminals. J Physiol (Lond) 184:335–352

    Google Scholar 

  • Gagel O (1928) Zur Histologie und Topographie der vegetativen Zentren in Rückenmark. Z Anat Entwicklungsgesch 85:213–250

    Google Scholar 

  • Gagel O (1932) Die vegetativen Anteile des Rückenmarks. Z Gesamte Neurol Psychiat 138:263–315

    Google Scholar 

  • Galabov P, Davidoff M (1976) On the vegetative network of guinea pig thoracic spinal cord. Histochemistry 47:247–255

    Google Scholar 

  • Gallego R (1983) The ionic basis of action potentials in the petrosal ganglion cells of the cat. J Physiol (Lond) 342:591–602

    Google Scholar 

  • Ganten D, Fuxe K, Phillips MI, Mann JFE, Ganten U (1978) The brain isorenin-angiotensin system: biochemistry, localisation and possible role in drinking and blood pressure regulation. In: Ganong WF, Martini L, (eds) Frontiers in neuroendocrinology, vol 5. Raven, New York, pp 61–100

    Google Scholar 

  • Garver DL, Sladek JR (1975) Monoamine distribution in primate brain. I. Catecholamine containing perikarya in the brain stem of Macaca speciosa. J Comp Neurol 159:289–304

    Google Scholar 

  • Gawhiler BH, Dreifuss JJ (1980) Transition from random to phasic firing induced in neurones cultured from the hypothalamic supraoptic area. Brain Res 193:415–425

    Google Scholar 

  • Gebber GL (1976) Basis for phase relations between baroreceptor and sympathetic nervous discharge. Am J Physiol 230:263–270

    Google Scholar 

  • Gebber GL (1980) Central oscillators responsible for sympathetic nerve discharge. Am J Physiol 239:H143–H155

    Google Scholar 

  • Gebber GL, Barman SM (1979) Inhibitory interactions between preganglionic sympathetic neurones. In: Meyer P, Schmitt H (eds) Nervous systems and hypertension. Wiley, New York, pp 137–145

    Google Scholar 

  • Gebber GL, Barman SM (1980) Basis for 2–6 cycle/s rhythm in sympathetic nerve discharge. Am J Physiol 239:R48–R56

    Google Scholar 

  • Gebber GL, McCall RB (1976) Identification and discharge patterns of spinal sympathetic interneurones. Am J Physiol 231:722–733

    Google Scholar 

  • Gebber GL, Taylor DG, Weaver LC (1973) Electrophysiological studies on organisation of central vasopressor pathways. Am J Physiol 224:470–481

    Google Scholar 

  • Gerber U, Polosa C (1978) Effects of pulmonary stretch receptor afferent stimulation on sympathetic pregnanglionic neurone firing. Can J Physiol Pharmacol 56:191–198

    Google Scholar 

  • Gerber U, Polosa C (1979) Some effects of superior laryngeal nerve stimulation on sympathetic preganglionic neurone firing. Can J Physiol Pharmacol 57:1073–1081

    Google Scholar 

  • Gibson SJ, Polak JM, Bloom SR, Wall PD (1981) The distribution of nine peptides in the rat spinal cord with special emphasis on the substantia gelatinosa and on the area around the central canal (Lamina x). J Comp Neurol 201:65–79

    Google Scholar 

  • Gilbert RFT, Emson PC, Hunt SP, Bennett GW, Marsden CA (1982a) Neuronal co-existance of putative transmitters in the spinal cord and brainstem of the rat. In: Cuello (ed) Cotransmission. MacMillan, London, pp 51–75

    Google Scholar 

  • Gilbert RFT, Emson PC, Hunt SP, Bennett GW, Marsden CA, Sandberg BEB, Steinbusch HWM, Verhofstad AAJ (1982b) The effects of monoamine neurotoxins on peptides in the rat spinal cord. Neuroscience 7:69–87

    Google Scholar 

  • Gilbey MP (1980) Characteristics of bulbo-spinal sympatho-inhibitory pathways descending from the ventromedial reticular formation and raphe nuclei of the medulla. PhD Thesis, University of Birmingham

    Google Scholar 

  • Gilbey MP, Coote JH, Macleod VH, Peterson DF (1981) Inhibition of sympathetic activity by stimulation of the raphe nuclei and the role of 5-hydroxytrypamine in this effect. Brain Res 226:131–142

    Google Scholar 

  • Gilbey MP, Coote JH, Fleetwood-Walker SM, Peterson DF (1982a) The influence of the paraventriculo-spinal pathway, and oxytocin and vasopressin on sympathetic preganglionic neurones. Brain Res 251:283–290

    Google Scholar 

  • Gilbey MP, Peterson DF, Coote JH (1982b) Some characteristics of sympathetic preganglionic neurones in the rat. Brain Res 241:43–48

    Google Scholar 

  • Gilbey MP, McKenna KE, Schramm LP (1983) Effects of substance P on sympathetic preganglionic neurones. Neurosci Lett 41:157–159

    Google Scholar 

  • Gilbey MP, Jordan D, Numao Y, Spyer KM, Wood LM (1985) Respiratory modulation of cervical sympathetic preganglionic neurones in the anaesthetised rat. J Physiol (Lond) 369:145

    Google Scholar 

  • Gilbey MP, Numao Y, Spyer KM (1986) Discharge patterns of cervical sympathetic preganglionic neurones related to central respiratory drive in the rat. J Physiol (Lond) 378:253–265

    Google Scholar 

  • Gilliatt RW (1948) Vasoconstriction in the finger after deep inspiration. J Physiol (Lond) 107:76–88

    Google Scholar 

  • Gilliatt RW, Guttmann L, Whitteridge D (1948) Inspiratory vasoconstriction in patients after spinal injuries. J Physiol (Lond) 107:65–75

    Google Scholar 

  • Gillis RA, Helke CJ, Hamilton BL, Morgenroth UH (1976) Cardiac arrhythmias produced by electrical stimulation of the mid brain raphe in the cat. Soc Neurosci Abst 2:74

    Google Scholar 

  • Gilmore JP, Tomomatsu E (1985) Renal mechanoreceptors in non-human primates. Am J. Physiol 248:R202–R207

    Google Scholar 

  • Glazer EJ, Ross LL (1980) Localisation of noradrenergic terminals on sympathetic preganglionic nuclei of the rat: demonstration by immunocytochemical localisation of dopamine hydroxylase. Brain Res 185:39–49

    Google Scholar 

  • Glick SM, Brownstein MJ (1980) Vasopressin content of rat brain. Life Sci 27:1103–1110

    Google Scholar 

  • Glick G, Wechsler AS, Epstein SE (1969) Reflex cardiovascular depression produced by the stimulation of pulmonary stretch receptors in the dog. J Clin Invest 48:467–473

    Google Scholar 

  • Gootman PM Cohen MI (1970) Efferent splanchnic activity and systemic arterial pressure. Am J Physiol 219:897–903

    Google Scholar 

  • Gootman PM, Cohen MI (1971) Evoked splanchnic potentials produced by electrical stimulation of medullary vasomotor regions. Exp Brain Res 13:1–14

    Google Scholar 

  • Gootman PM, Cohen MI (1973) Periodic modulation (cardiac and respiratory) of spontaneous and evoked sympathetic discharge. Acta Physiol Pol 24:97–109

    Google Scholar 

  • Gootman PM, Cohen MI (1974) The interrelationships between sympathetic discharge and central respiratory drive. In: Umbach W, Koepchen HP (eds) Central rhythmic and regulation. Hippokrates, Stuttgart, pp 195–209

    Google Scholar 

  • Gootman PM, Cohen MI (1980) Origin of rhythms common to sympathetic outflows at different spinal levels. In: Sleight P (ed) Arterial baroreceptors and hypertension. Oxford University Press, Oxford, pp 154–160

    Google Scholar 

  • Gootman PM, Cohen MI (1981) Sympathetic rhythms in spinal cats. J Auton Nerv Syst 3:379–387

    Google Scholar 

  • Gootman PM, Cohen MI, Piercey MP, Wolotsky P (1975) A search for medullary neurones with activity patterns similar to those in sympathetic nerves. Brain Res 87:395–406

    Google Scholar 

  • Gootman PM, Feldman JL, Cohen MI (1980) Pulmonary afferent influences on respiratory modulation of sympathetic discharge. In: Koepchen HP, Hilton SM, Trzebski A (eds) Central interactions between respiratory and cardiovascular control systems. Springer, Berlin Heidelberg New York, pp 172–178

    Google Scholar 

  • Graham LT, Shank RP, Werman R, Aprison MH (1967) Distribution of some synaptic transmitter suspects in cat spinal cord: glutamic acid, aspartic acid, γ-aminobutyric acid, glycine and glutamine. J Neurochem 14:465–472

    Google Scholar 

  • Green JH, Heffron PF (1967) Observations on the origin and genesis of a rapid sympathetic rhythm. Arch Int Pharmacodyn Ther 109:403–411

    Google Scholar 

  • Gregor M, Janig W (1977) Effects of systemic hypoxia and hypercapnia on cutaneous and muscle vasconstrictor neurones in the cats hind limb. Pflügers Arch 368:71–81

    Google Scholar 

  • Gregor M, Janig W, Riedel W (1976) Response patterns of cutaneous postganglionic neurones to the hind limb on spinal cord heating and cooling in the cat. Pflügers Arch 363:135–140

    Google Scholar 

  • Greving R (1928) Die zentralen Anteile des vegetativen Nervensystems. In: Möllendorf W, Bargmann W (eds) Handbuch der mikroskopischen Anatomie des Menschen, vol 4. Springer, Berlin Heidelberg New York, pp 917–1060

    Google Scholar 

  • Grillner S, Lund S (1968) The origin of a descending pathway with monosynaptic action on flexor motoneurones. Acta Physiol Scand 74:274–284

    Google Scholar 

  • Grillner S, Hongo T, Lund S (1970) The vestibulo-spinal tract. Effects on alpha motoneurones in the lumbosacral spinal cord in cat. Exp Brain Res 10:94–120

    Google Scholar 

  • Grosse M, Janig W (1976) Vasoconstrictor and pilomotor fibres in skin nerves to the cat's tail. Pflügers Arch 361:221–229

    Google Scholar 

  • Guertzenstein PG, Silver A (1974) Fall in blood pressure produced from discrete regions of the ventral surface of the medulla by glycine and lesions. J Physiol (Lond) 242:489–503

    Google Scholar 

  • Gustafsson B (1974) After-hyperpolarisation and the control of repetitive firing in spinal neurones of the cat. Acta Physiol Scand [Suppl] 416:1–47

    Google Scholar 

  • Gustafsson B, Lipski J (1980) Effect of membrane polarisation on synaptic activity of the timing of antidromic invasion. Brain Res 181:121–133

    Google Scholar 

  • Guyenet PG (1980) The coeruleospinal noradrenergic neurones: anatomical and electrophysiological studies in the rat. Brain Res 189:121–133

    Google Scholar 

  • Guyenet PG, Cabot JB (1981) Inhibition of sympathetic preganglionic neurones by catecholamines and clonidine: mediation by an adrenergic receptor. J Neurosci 1:908–917

    Google Scholar 

  • Guyenet PG, Stornetta RL (1982) Inhibition of sympathetic preganglionic discharges by epinephrine and methyl epinephrine. Brain Res 235:271–283

    Google Scholar 

  • Guyton AC, Harris JW (1951) Pressor receptor autonomic oscillation: a possible cause of vasomotor waves. Am J Physiol 165:158–166

    Google Scholar 

  • Haeusler G (1977) Neuronal mechanisms influencing transmissions in the baroreflex arc. Prog Brain Res 47:95–109

    Google Scholar 

  • Haigler HJ, Aghajanian GK (1974) Lysergic diethylamide and serotonin. A comparison of effects on serotonin neurones and neurones receiving a serotonin input. J Pharmacol Exp Ther 188:688–699

    Google Scholar 

  • Hancock MB (1976) Cells of origin of hypothalamo-spinal projections in the rat. Neurosci Lett 3:179–184

    Google Scholar 

  • Hancock MB (1982) Leu-enkephalin, substance P, somatostatin immunohistochemistry combined with retrograde transport of horseradish peroxidase in sympathetic preganglionic neurones. J Auton Nerv Syst 6:263–272

    Google Scholar 

  • Hancock MB, Peveto CA (1979) A preganglionic autonomic nucleus in the dorsal gray commissure of the lumbar spinal cord of the rat. J Auton Nerv Syst 183:45–72

    Google Scholar 

  • Hanna BD, Lioy F, Polosa C (1979) The effect of cold blockade of the medullary chemoreceptors on the CO2 modulation of vascular tone and heart rate. Can J Physiol Pharmacol 57:461–468

    Google Scholar 

  • Harada Y, Takahashi T (1983) The calcium component of the action potential in spinal motoneurones of the rat. J Physiol (Lond) 335:89–100

    Google Scholar 

  • Hare BD, Neumayr RJ, Franz DN (1972) Opposite effects of L-Dopa and 5-HTP on spinal sympathetic reflexes. Nature 239:226–227

    Google Scholar 

  • Hass HL, Felix D, Celio MR, Ingami T (1980) Angiotensin II in the hippocampus. A histochemical and electrophysiological study. Experientia 36:1394–1395

    Google Scholar 

  • Hedreen JC, McGrath S (1977) Observations of labelling of neuronal cell bodies, axons, and terminals after injection of horseradish peroxidase into rat brain. J Comp Neurol 176:225–246

    Google Scholar 

  • Helke CJ, Neil JJ, Massari VJ, Loewy AD (1982) Substance P neurones project from the ventral medulla to the intermediolateral cell column and the ventral horn in the rat. Brain Res 243:147–152

    Google Scholar 

  • Helke CJ, Sayson SC, Keeler JR, Charlton CG (1985) Evidence for bulbospinal thyrotropin releasing hormone (TRH) projections: co-existence with serotonin. Fed Proc 44:1388

    Google Scholar 

  • Helke CJ, Sayson SC, Keeler JR, Charlton CG (1986) Thyrotropin-releasing hormone immunoreactive neurones project from the ventral medulla to the intermediolateral cell column: partial co-existence with serotonin. Brain Res 381:1–7

    Google Scholar 

  • Henry JL, Calaresu FR (1972a) Distribution of cardiovascular sites in the intermediolateral nucleus of the cat. Am J Physiol 222:700–704

    Google Scholar 

  • Henry JL, Calareus FR (1972b) Topography and numerical distribution of neurones of the thoraco-lumbar intermediolateral nucleus in the cat. J Comp Neurol 144:205–214

    Google Scholar 

  • Henry JL, Calaresu FR (1974a) Excitatory and inhibitory inputs from medullary nuclei projecting to spinal cardioacceleratory neurones in the cat. Exp Brain Res 20:485–504

    Google Scholar 

  • Henry JL, Calaresu FR (1974b) Pathways from medullary nuclei to spinal cardioacceleratory neurones in the cat. Exp Brain Res 20:505–514

    Google Scholar 

  • Henry JL, Calaresu FR (1974c) Origin and course of crossed medullary pathways to spinal sympathetic neurones in the cat. Exp Brain Res 20:515–526

    Google Scholar 

  • Henry JL, Calaresu FR (1974d) Responses of single units in the intermediolateral nucleus to stimulation of cardioregulatory medullary nuclei in the cat. Brain Res 77:314–319

    Google Scholar 

  • Heuser JE, Reese TS (1973) Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol 57:315–344

    Google Scholar 

  • Heymans C, Bouckaert JJ, Farber S, Hsu FY (1936) Spinal vasomotor reflexes associated with variations in blood pressure. Am J Physiol 117:619–625

    Google Scholar 

  • Hilaire G, Monteau R (1976) Connexions entre les neurone inspiratories bulbaires et les motoneurones phréniques et intercostaux. J Physiol (Paris) 72:987–1000

    Google Scholar 

  • Hilton SM, Marshall JM (1982) The pattern of cardiovascular response to the carotid chemoreceptor stimulation in the cat. J Physiol (Lond) 326:495–513

    Google Scholar 

  • Hilton SM, Marshall JM, Timms RJ (1983) Ventral medullary relay neurones in the pathway from the defence areas of the cat and their effect on blood pressure. J Physiol (Lond) 345:149–166

    Google Scholar 

  • Hokfelt T, Fuxe K, Goldstein M, Jonsson O (1974) Immunohistochemical evidence for the existence of adrenaline neurones in the rat brain. Brain Res 66:235–251

    Google Scholar 

  • Hokfelt T, Fuxe K, Johansson O, Jeffcoate S, White N (1975) Thyrotropin releasing hormone (TRH) containing nerve terminals in certain brainstem nuclei and in the spinal cord. Neurosci Lett 1:133–139

    Google Scholar 

  • Hokfelt T, Ljungdahl A, Steinbusch H, Verhofstad A, Nilsson G, Brodin E, Pernov B, Goldstein M (1978) Immunohistochemical evidence of a substance P like immunoreactivity in some 5-hydroxytryptamine containing neurones in the rat central nervous system. Neuroscience 3:517–538

    Google Scholar 

  • Hokfelt T, Terenius L, Kuypers HGJM, Dann O (1979) Evidence for enkephalin immunoreactive neurones in the medulla oblongata projecting to the spinal cord. Neurosci Lett 14:55–60

    Google Scholar 

  • Hokfelt T, Johansson O, Ljungdahl A, Lundberg JM, Schultzberg M (1980) Peptidergic neurones. Nature 284:515–521

    Google Scholar 

  • Holets V, Elde R (1982) The differential distribution and relationship of serotonin and peptidergic fibers to the sympathoadrenal neurones in the intermediolateral cell column of the rat: a combined retrograde axonal transport and immunofluorescence study. Neuroscience 7:1155–1174

    Google Scholar 

  • Holets V, Elde R (1983) Sympathoadrenal preganglionic neurons: their distribution and relationship to chemically-coded fibres in the kitten intermediolateral cell column. J Auton Nerv Syst 7:149–163

    Google Scholar 

  • Holstege G, Kuypers HGJM (1982) The anatomy of brainstem pathways to the spinal cord in cat. A labelled amino acid tracing study. Prog Brain Res 57:145–175

    Google Scholar 

  • Holstege G, Kuypers HGJM, Boer RC (1979) Anatomical evidence for direct brainstem projections to the somatic motoneurone cell groups and autonomic preganglionic cell groups in cat spinal cord. Brain Res 171:329–323

    Google Scholar 

  • Hongo T, Ryall RW (1966) Electrophysiological and microelectrophoretic studies on sympathetic preganglionic neurones in the spinal cord. Acta Physiol Scand 68:96–104

    Google Scholar 

  • Hongo T, Jankowska E, Lundberg A (1968) Postsynaptic excitation and inhibition from primary afferents in neurones in the spinocervical tract. J Physiol (Lond) 199:569–592

    Google Scholar 

  • Horeyseck G, Janig W (1974a) Reflex activity in postganglionic fibres within skin and muscle nerves elicited by somatic stimuli in chronic spinal cats. Exp Brain Res 21:155–168

    Google Scholar 

  • Horeyseck G, Janig W (1974b) Reflexes within postganglionic fibres within skin and muscle nerves after mechanical non-noxious stimulation of skin. Exp Brain Res 20:115–123

    Google Scholar 

  • Horeyseck G, Janig W (1974c) Reflexes in postganglionic fibres within skin and muscle nerves after noxious stimulation of skin. Exp Brain Res 20:125–134

    Google Scholar 

  • Hosoya Y (1980) The distribution of spinal projecting neurones in the hypothalamus of the rat, studied with the HRP method. Exp Brain Res 40:79–87

    Google Scholar 

  • Howe PRC, Costa M, Furness JB, Chalmers JP (1980) Simultaneous demonstration of phenylethanolamine N methyl transferase immunofluorescent and catecholamine fluorescent nerve cell bodies in the rat medulla oblongata. Neuroscience 5:2229–2238

    Google Scholar 

  • Howe PRC, Khun DM, Minson JB, Stead BH, Chalmers P (1983) Evidence for a bulbospinal serotonergic pressor pathway in the rat brain. Brain Res 270:29–36

    Google Scholar 

  • Hubbard JE, Di Carlo V (1974a) Fluorescence histochemistry of monoamine containing cell bodies in the brainstem of the squirrel monkey (Siamiri sciureus). II. Catecholamine containing groups. J Comp Neurol 153:369–384

    Google Scholar 

  • Hubbard JE, Di Carlo V (1974b) Fluorescence histochemistry of monoamine containing cell bodies in the brain stem of the squirrel monkey (Saimiri sciureus). III. Serotonin containing groups. J Comp Neurol 153:385–398

    Google Scholar 

  • Huber JF (1936) Nerve roots and nuclear groups in the spinal cord of the pigeon. J Comp Neurol 65:43–91

    Google Scholar 

  • Ikeda H, Gotah J (1971) Distribution of monoamine containing cells in the central nervous system of the chicken. Jpn J Pharmacol 21:763–784

    Google Scholar 

  • Illert M, Gabriel M (1970) Mapping the spinal cord of the cat for sympathetic and blood pressure responses. Brain Res 23:274–276

    Google Scholar 

  • Illert M, Gabriel M (1972) Descending pathways in the cervical cord of cats affecting blood pressure and sympathetic activity. Pflügers Arch 335:109–124

    Google Scholar 

  • Illert M, Seller H (1969) A descending sympatho-inhibitory tract in the ventrolateral column of the cat. Pflügers Arch. 313:343–360

    Google Scholar 

  • Ipp E, Dobbs R, Unger RH (1978) Morphine and β-endorphin influence the secretion of the endocrine pancreas. Nature 276:190–191

    Google Scholar 

  • Iriki M, Kozawa E (1975) Factors controlling the regional differentiation of sympathetic outflow — influence of the chemoreceptor reflex. Brain Res 87:281–291

    Google Scholar 

  • Ishikawa M, Shimada S, Tanaka C (1975) Histochemical mapping of catecholamine neurones and fiber pathways in the pontine tegmentum of the dog. Brain Res 86:1–16

    Google Scholar 

  • Iwamura Y, Uchino Y, Ozawa S, Kudo N (1969) Excitatory and inhibitory components of somato-sympathetic reflex. Brain Res 16:351–358

    Google Scholar 

  • Jackson IMD (1980) TRH in the rat nervous system: identity with synthetic TRH on high performance liquid chromatography following affinity chromatography. Brain Res 201:245–248

    Google Scholar 

  • Jackson I, Reichlin S (1974) Thyrotropin releasing hormone (TRH): distribution in hypothalamic and extrahypothalamic brain tissue of mammalian and submammalian chordates. Endocrinology 95:854–862

    Google Scholar 

  • Jacobsohn L (1908) Über die Kerne des menschlichen Rückenmarks. Anhang zu den Abhandlungen der Königlichen Preußischen Akademie der Wissenschaften. Reimer, Berlin

    Google Scholar 

  • Janig W (1979) Reciprocal reaction patterns of sympathetic subsystems with respect to various afferent inputs. In: Brooks C McC, Koizumi K, Sato A (eds) Integrative functions of the autonomic nervous system. University of Tokyo Press, Tokyo and Elsevier, Amsterdam, pp 263–274

    Google Scholar 

  • Janig W (1985) Organisation of the lumbar sympathetic outflow to skeletal muscle and skin of the hind limb and tail. Rev Physiol Biochem Pharmacol 102:119–213

    Google Scholar 

  • Janig W, Kummel H (1977) Functional discrimination of postganglionic neurones to the cat's hind paw with respect to skin potentials recorded from the hairless skin. Pflügers Arch 371:217–225

    Google Scholar 

  • Janig W, Kummel H (1981) Organisation of the sympathetic innervation supplying the hairless skin of the cat's paw. J Auton Nerv Syst 3:215–230

    Google Scholar 

  • Janig W, McLachlan EM (1986) Identification of distinct topographic distributions of lumbar sympathetic preganglionic neurones projecting to end organs with different functions in the cat. J Comp Neurol 246:104–112

    Google Scholar 

  • Janig W, Rath B (1977) Electrodermal reflexes in the cat's paws elicited by natural stimulation of the skin. Pflügers Arch 369:27–32

    Google Scholar 

  • Janig W, Schmidt RF (1970) Single unit responses in the cervical sympathetic trunk upon somatic nerve stimulation. Pflügers Arch 314:199–216

    Google Scholar 

  • Janig W, Spilok N (1978) Functional organisation of the sympathetic innervation supplying the hairless skin of the hind paws in chronic spinal cats. Pflügers Arch 377:25–31

    Google Scholar 

  • Janig W, Szulczyk P (1979) Conduction velocity in spinal descending pathways of baro-and chemoreceptor reflex. Brain Res 168:404–407

    Google Scholar 

  • Janig W, Szulczyk P (1980) Functional properties of lumbar preganglionic neurones. Brain Res 186:115–131

    Google Scholar 

  • Janig W, Sato A, Schmidt RF (1972) Reflexes in the postganglionic cutaneous fibres by stimulation of group I to group IV somatic afferents. Pflügers Arch 331:244–256

    Google Scholar 

  • Jansen JKS, Nicholls JG (1973) Conductance changes, an electrogenic pump and the hyperpolarisation of leech neurones following inpulses. J Physiol (Lond) 229:635–655

    Google Scholar 

  • Jenkins JS, Ang VTY, Hawthorn J, Rossor MN, Iverson LL (1984) Vasopressin, oxytocin and neurophysins in the human brain and spinal cord. Brain Res 291:111–117

    Google Scholar 

  • Johansson B (1962) Circulatory responses to stimulation of somatic afferents. Acta Physiol Scand 57 [Suppl 198]:1–92

    Google Scholar 

  • Johansson B, Langston JB (1964) Reflex influence of mesenteric afferents on renal, intestinal and muscle blood flow and on intestinal motility. Acta Physiol Scand 61:400–412

    Google Scholar 

  • Johansson B, Jansson O, Ljung B (1968) Tonic supraspinal mechanisms influencing the intestino-intestinal inhibitory reflex. Acta Physiol Scand 72:200–204

    Google Scholar 

  • Johansson O, Hokfelt T, Pernow B, Jeffcoate SL, White N, Steinbusch HWM, Verhofstad AAJ, Emson PC, Spindel E (1981) Immunohistochemical support for three putative transmitters in one neurone: co-existence of 5-hydroxytryptamine, substance P and thyrotropin releasing hormone like immunoreactivity in the medullary neurones projecting to the spinal cord. Neuroscience 6:1857–1881

    Google Scholar 

  • Johnson RH, Crampton-Smith A, Walker JM (1969) Heart rate and blood pressure of spinal cats inspiring CO2 before and after injection of hexamethonium. Clin Sci 36:257–265

    Google Scholar 

  • Jones DJ, Kendall DE, Enna SJ (1982) Adrenergic receptors in rat spinal cord. Neuropharmacology 21:367–370

    Google Scholar 

  • Jones EG (1975) Possible determinants of the degree of retrograde neuronal labelling with horseradish peroxidase. Brain Res 85:249–254

    Google Scholar 

  • Kadzielawa K (1983a) Inhibition of the activity of sympathetic preganglionic neurones and neurones activated by viceral afferents by alpha-methyl noradrenaline and endogenous catecholamines. Neuropharmacology 22:3–17

    Google Scholar 

  • Kadzielawa K (1983b) Antagonism of the excitatory effects of 5-hydroxytryptamine on sympathetic preganglionic neurones and neurones activated by visceral afferents. Neuropharmacology 22:19–27

    Google Scholar 

  • Kaminski RJ, Meyer GA, Winter DL (1970) Sympathetic unit activity associated with Mayer waves in the spinal dog. Am J Physiol 219:1768–1771

    Google Scholar 

  • Kardon FC, Winokur A, Utiger RD (1977) Thyrotropin releasing hormone (TRH) in rat spinal cord. Brain Res 122:578–581

    Google Scholar 

  • Katholi RE, Hazeman GR, Whitlow PL, Woods WT (1983). Hemodynamic and afferent nerve responses to intrathecal adenosine in the dog. Hypertension 5 [Suppl 1]:149–154

    Google Scholar 

  • Kaufman A, Koizumi K (1971) Spontaneous and reflex activity of single units in lumbar white rami. In: Kao FF, Vassalle M, Koizumi K (eds) Research in physiology. A liber memorialis in honour of Professor CM Brooks. Aulo Gaggi, Bologna, pp 469–481

    Google Scholar 

  • Kaufman A, Sato A, Sato Y, Sugimoto H (1977) Reflex changes in heart rate after mechanical and thermal stimulation of the skin at various levels in cats. Neuroscience 2:103–109

    Google Scholar 

  • Kaya R, Starling EH (1909) Note on asphyxia in the spinal animal. J Physiol (Lond) 39:346–353

    Google Scholar 

  • Keeler JR, Helke CJ (1985) Spinal cord substance P mediates bicuculline induced activation of cardiovascular responses from the ventral medulla. J Auton Nerv Syst 13:19–33

    Google Scholar 

  • Keeler JR, Charlton CG, Helke CJ (1985) Cardiovascular effects of spinal cord substance P: studies with stable receptor agonist. J Pharmacol Exp Ther 233:755–760

    Google Scholar 

  • Kehrel H, Mutharoglu N, Weidinger H (1962) Über phasische Einflüsse und den Einfluß der Asphyxie auf den Tonus des sympathischen Kreislaufzentrums. Z Kreislaufforsch 51:334–351

    Google Scholar 

  • Kell JF, Hoff EC (1952) Descending spinal pathways mediating pressor responses of cerebral origin. J Neurophysiol 15:229–311

    Google Scholar 

  • Kerr FWL (1975) Neuroanatomical substrates of nociception in the spinal cord. Pain 1:325–356

    Google Scholar 

  • Kerr FWL, Alexander S (1964) Descending autonomic pathways in the spinal cord. Arch Neurol Psychiatr, Chicago 10:249–261

    Google Scholar 

  • Khayutin VM, Lukoshkova EV (1970) Spinal mediation of vasomotor reflexes in animals with intact brain studied by electrophysiological methods. Pflügers Arch 321:197–222

    Google Scholar 

  • Khimonidi RK, Baklavadjan OG, Lebedev VP, Saruchanjan RV (1980) Specialisation of the descending sympatho-excitatory pathways of the spinal cord dorsolateral funiculus. Fiziol Zh SSSR 66:1031–1038 (In Russian)

    Google Scholar 

  • Kirchner F, Sato A, Weidinger H (1970) Central pathways of reflex discharges in the cervical sympathetic trunk. Pflügers Arch 319:1–11

    Google Scholar 

  • Kirchner F, Sato A, Weidinger H (1971) Bulbar inhibition of spinal and supraspinal sympathetic reflex discharges. Pflügers Arch 326:324–333

    Google Scholar 

  • Kirchner F, Wyszogrodski I, Polosa C (1975a) Some properties of sympathetic preganglionic neurone inhibition by depressor area and intraspinal stimulation. Pflügers Arch 357:349–360

    Google Scholar 

  • Kirchner F, Kirchner D, Polosa C (1975b) Spinal organisation of sympathetic inhibition by spinal afferent volleys. Brain Res 87:161–170

    Google Scholar 

  • Knowles WD, Phillips MI (1980) Angiotensin II cells in the organum vasculosum lamina terminals (OVLT) recorded in the hypothalamic brain slices. Brain Res 197:256–259

    Google Scholar 

  • Koepchen HP (1962) Die Blutdruckrhythmik. Steinkopff Darmstadt

    Google Scholar 

  • Koizumi K, Brooks CM (1972) The integration of autonomic systems and their reactions: a discussion of autonomic reflexes, their control and their association with somatic reaction. Ergeb Physiol: 67:1–68

    Google Scholar 

  • Koizumi K, Brooks C McC (1984) The spinal cord and the autonomic nervous system. In: Davidoff RA (ed) Handbook of the spinal cord, vols 2, 3. Dekker, New York, pp 779–816

    Google Scholar 

  • Koizumi K, Sato A (1972) Reflex activity of single sympathetic fibres to skeletal muscles produced by electrical stimulation of somatic and vasodepressor afferent nerves. Pflügers Arch 332:283–301

    Google Scholar 

  • Koizumi K, Suda I (1963) Induced modulations in autonomic efferent neurone activity. Am J Physiol 205:738–744

    Google Scholar 

  • Koizumi K, Sato A, Kaufman A, Brooks C McC (1968) Studies of sympathetic neuron discharges modified by central and peripheral excitation. Brain Res 11:212–224

    Google Scholar 

  • Koizumi K, Collin R, Kaufman A, Brooks CM (1970) Contribution of unmyelinated afferent excitation to sympathetic reflexes. Brain Res: 20:99–106

    Google Scholar 

  • Koizumi K, Seller H, Kaufman A, Brooks C McC (1971) Pattern of sympathetic discharges and their relation to baroreceptor and respiratory activities. Brain Res 27:281–294

    Google Scholar 

  • Kojima M, Takecuchi Y, Goto M, Sano Y (1982) Immunohistochemical study of the distribution of serotonin fibres in the spinal cord of the dog. Cell Tissue Res 226:477–491

    Google Scholar 

  • Kollai M, Koizumi K (1977) Differential responses in sympathetic outflow evoked by chemoreceptor activation. Brain Res 138:159–165

    Google Scholar 

  • Konishi M (1968) Fluorescence microscopy of the spinal cord of the dog with special reference to the autonomie lateral horn cells. Arch Histol Jpn 30:33–44

    Google Scholar 

  • Konturek SJ, Tasler J, Cieszkowski M, Jaworek J, Coy DH, Schally AV (1978) Inhibition of the pancreas secretion by enkephalin and morphine in dogs. Gastroenterology 74:851–855

    Google Scholar 

  • Kopp UC, Olson LA, DiBona GF (1984) Reno-renal reflex responses to mechano-and chemoreceptor stimulation in the dog and rat. Am J Physiol 246:F67–F77

    Google Scholar 

  • Kopp UC, Smith LA, DiBona GF (1985) Renorenal reflexes: neuronal components of ipsilateral and contralateral renal responses. Am J Physiol 249:F507–F517

    Google Scholar 

  • Kostreva DR, Seaguard JL, Castaner A, Kampine JP (1981) Reflex effects of renal afferents on the heart and kidney. Am J Physiol 241:R286–R292

    Google Scholar 

  • Krasyukov AV, Lebedev VP, Nikitin SA (1981) White rami responses to stimulation of the ventral surface of the medulla. Fiziol Zh SSSR 6:1057–1066

    Google Scholar 

  • Krieder MS, Winokur A, Utiger RD (1979) TRH immunoreactivity in rat hypothalamus and brain, assessment by gel-filtration and thin layer chromatography. Brain Res 171:161–165

    Google Scholar 

  • Krnjevic K, Lisiewicz A (1972) Injection of calcium ions into spinal motoneurones. J Physiol (Lond) 225:363–390

    Google Scholar 

  • Krnjevic K, Randic M, Siesjo BK (1965) Cortical CO2 tension and neuronal excitability. J Physiol (Lond) 176:105–122

    Google Scholar 

  • Krukoff TL, Ciriello J, Calaresu FR (1985a) Segmental distribution of peptide and 5HT like immunoreactivity in nerve terminals and fibres of thoracolumbar sympathetic nuclei of the cat. J Comp Neurol 240:103–116

    Google Scholar 

  • Krukoff TL, Ciriello J, Calaresu FR (1985b) Segmental distribution of peptide like immuno-reactivity in cell bodies of the lumbar sympathetic nuclei of the cat. J Comp Neurol 240:90–102

    Google Scholar 

  • Kubeck MJ, Lorincz MA, Wilber JF (1977) The identification of thyrotropin releasing hormone (TRH) in hypothalamic and extrahypothalamic loci of the human nervous system. Brain Res 126:196–200

    Google Scholar 

  • Kuhn DM, Wolf WA, Lovenberg W (1980a) Pressor effects of electrical stimulation of the dorsal and median raphe nuclei in anaethestised rats. J Pharmacol Exp Ther 214:403–409

    Google Scholar 

  • Kuhn DM, Wolf WA, Lovenberg W (1980b) Review of the role of central serotonergic neuronal system in blood pressure regulation. Hypertension 2:243–255

    Google Scholar 

  • Kumazawa T, Perl ER (1976) Differential excitation of dorsal horn and substantia gelatinosa marginal neurones by primary afferent units with fine (A and C) fibres. In: Zotterman Y (ed) Sensory functions of the skin in primates. Pergamon, Oxford, pp 67–87

    Google Scholar 

  • Kuo DC, Yamasaki OS, Krauthamer GM (1980) Segmental organisation of sympathetic preganglionic neurones of the splanchnic nerve as revealed by retrograde transport of horseradish peroxidase. Neurosci Lett 17:11–16

    Google Scholar 

  • Kuo DC, Nadelhaft I, Hisamitsu T, De Groat WC (1983) Segmental distribution and central projections of renal afferent fibres in the cat studied by transganglionic transport of horseradish peroxidase. J Comp Nuerol 216:162–174

    Google Scholar 

  • Kuypers HGJM, Maisky VA (1975) Retrograde axonal transport of horseradish peroxidase from spinal cord to brain stem cell groups. Neurosci Lett 11:9–14

    Google Scholar 

  • Kuypers HGJM, Martin GF (1982) Anatomy of descending pathways to the spinal cord. Prog Brain Res 57:1–411

    Google Scholar 

  • Lackner KJ (1980) Mapping of monoamine neurones and fibres in the lower brainstem and spinal cord. Anat Embryol (Berl) 161:169–195

    Google Scholar 

  • Lane JD, Smith JE, Hall PV, Campbell RL (1978) Distribution of taurine and putative amino acid neurotransmitters in eight areas of the canine lumbar spinal cord. Brain Res 152:386–390

    Google Scholar 

  • Lang RE, Heil J, Ganten D, Herman K, Rascher W, Unger T (1983) Effect of lesions in the paraventricular nucleus on vasopressin and oxytocin contents in brainstem and spinal cord. Brain Res 260:326–329

    Google Scholar 

  • Laruelle L (1937) La structure de la moelle épinière en coupes longitudinales. Rev Neurol (Paris) 44:695–725

    Google Scholar 

  • Laskey W, Schondorf R, Polosa C (1979) Intersegmental connections and interactions of myelinated somatic and visceral afferents with sympathetic preganglionic neurones in the unanaesthetised spinal cat. J Auton Nerv Syst 1:69–76

    Google Scholar 

  • Lebedev VP, Skobelev VA, Bushmarina TA (1974) Study of the lateral horn sympathetic preganglionic neurones in the cat lumbar spinal cord. Neirofiziologiia 6:295–303

    Google Scholar 

  • Lebedev VP, Petrov VI, Skobelev VA (1976a) Antidromic discharges of sympathetic preganglionic neurones located outside the spinal cord lateral horns. Neurosci Lett 2:325–329

    Google Scholar 

  • Lebedev VP, Rosanov NN, Skobelev VA, Smirnov KA (1976b) Study of the early somato-sympathetic reflex response. Neurosci Lett 2:319–323

    Google Scholar 

  • Lebedev VP, Baklavajan OG, Khimonidi RK (1979) The level of realization of the baroreceptor sympatho-inhibitory influences. Fiziol Zh SSSR 66:1015–1023

    Google Scholar 

  • Lebedev VP, Petrov VI, Skobelev VA (1980) Do sympathetic preganglionic neurones have a recurrent inhibitory mechanism? Pflügers Arch 383:91–97

    Google Scholar 

  • Lebedev VP, Krasyukov AV, Nikitin SA (1986) Electrophysiological study of sympathoexcitatory structures of the bulbar ventrolateral surface as related to vasomotor regulation. Neuroscience 17:189–203

    Google Scholar 

  • Lechan RM, Molich ME, Jackson IMD (1983) Distribution of immunoreactive growth hormone-like material and thyrotropin-releasing hormone in the rat central nervous system: evidence for their co-existence in the same neurones. Endocrinology 112:877–884

    Google Scholar 

  • Lechan RM, Snapper SB, Jacobson S, Jackson IMD (1984) The distribution of thyrotropin-releasing hormone (TRH) in the Rhesus monkey spinal cord. Peptides Suppl 1, 5:185–194

    Google Scholar 

  • Legendre P, Simmonet G, Vincent JD (1984) Electrophysiological effects of angiotensin II on cultured mouse spinal cord neurones. Brain Res 279:287–296

    Google Scholar 

  • Leong SK, Tay SS, Wong WC (1983) Preganglionic neurones projecting to the first thoracic sympathetic ganglion in the terrapin (Trionyx sinensis) J Auton Nerv Syst 9:585–593

    Google Scholar 

  • Levi-Montalcini R, Angeletti PU (1964) Hormonal control of the NGF content of the submaxillary glands of mice. In: Steenby LM, Meyer J (ed) Salivary glands and their secretions. Pergamon, Oxford, pp 129–141

    Google Scholar 

  • Light AR, Perl ER (1979) Re-examination of the dorsal root projection to the spinal dorsal horn including observations on the differential termination of coarse and fine fibres. J Comp Neurol 186:117–132

    Google Scholar 

  • Lind RW, Swanson LW, Ganten D (1985) Organisation of angiotensin II immunoreactive cells and fibres in the rat central nervous system. Neuroendocrinology 40:2–24

    Google Scholar 

  • Linden RJ (1979) Atrial receptors and heart rate. In: Hainsworth R, Kidd C, Linden RJ (eds) Cardiac receptors. Cambridge University Press, Cambridge, pp 165–191

    Google Scholar 

  • Lioy F, Hanna BD, Polosa C (1978) CO2 dependent component of the neurogenic vascular tone in the cat. Pflügers Arch 374:187–191

    Google Scholar 

  • Lipski J (1981) Antidromic activation of neurones as an analytic tool in the study of the central nervous system. J Neurosci Methods 4:1–32

    Google Scholar 

  • Lipski J, Trzebski A (1975) Bulbospinal neurones activated by baroreceptor afferents and their possible role in inhibition of preganglionic sympathetic neurones. Pflügers Arch 356:181–192

    Google Scholar 

  • Lipski J, Coote JH, Trzebski A (1977) Temporal patterns of antidromic neurones related to the central inspiratory activity and pulmonary stretch receptor reflex. Brain Res 135:162–166

    Google Scholar 

  • Ljungdahl A, Hokfelt T, Nilsson G (1978) Distribution of substance P like immunoreactivity in the central nervous system of the rat: cell bodies and nerve terminals. Neuroscience 3:861–943

    Google Scholar 

  • Llinas R, Hess R (1976) Tetrodotoxin-resistant dendritic spikes in avian purkinje cells. Proc Natl Acad Sci USA 73:2520–2523

    Google Scholar 

  • LoPachin RM, Rudy TA (1983) Sites and mechanisms of action for the effects of intrathecal noradrenaline on thermoregulation in the rat. J Physiol (Lond) 341:527–544

    Google Scholar 

  • Loewy AD (1981) Raphe pallidus and raphe obscurus projections to the intermediolateral cell column in the rat. Brain Res 222:129–133

    Google Scholar 

  • Loewy AD, McKellar S (1980) The neuroanatomical basis of central cardiovascular control. Fed Proc 39:2495–2503

    Google Scholar 

  • Loewy AD, McKellar S (1981) Serotonergic projections from the ventral medulla to the intermediolateral cell column in the rat. Brain Res 211:146–152

    Google Scholar 

  • Loewy AD, Neil JJ (1981) The role of descending monoaminergic systems in the central control of blood pressure. Fed Proc 40:2778–2785

    Google Scholar 

  • Loewy AD, Sawyer WB (1982) Substance P antagonist inhibits vasomotor responses elicited from the ventral medulla in rat. Brain Res 245:379–383

    Google Scholar 

  • Loewy AD, Gregorie EM, McKellar S, Baker RP (1979a) Electrophysiological evidence that the A5 catecholamine cell group is a vasomotor centre. Brain Res 178:196–200

    Google Scholar 

  • Loewy AD, McKellar S, Saper CB (1979b) Direct projections from the A5 catecholamine cell group to the intermediolateral cell column. Brain Res 174:309–314

    Google Scholar 

  • Loewy AD, Wallach JH, McKellar S (1981) Efferent connections of the ventral medulla oblongata in the rat. Brain Res Rev 3:63–80

    Google Scholar 

  • Loewy AD, Marson L, Parkinson D, Perry MA, Sawyer WB (1986) Descending noradrenergic pathways involved in the A5 depressor response. Brain Res 386:H44–H51

    Google Scholar 

  • Loh HH, Li CH (1977) Biologic activities of β-endorphin and its related peptides. Ann NY Acad Sci 297:115–128

    Google Scholar 

  • Loizou LA (1972) The postnatal ontogeny of monoamine containing neurones in the central nervous system of the albino rat. Brain Res 40:395–418

    Google Scholar 

  • Lorenz RG, Saper CB, Wong DC, Ciaranello RD, Loewy AD (1985) Co-localisation of substance P and phenylethanolamine N-methyl transferase-like immunoreactivity in neurons of ventrolateral medulla that project to the spinal cord: potential role in central vasomotor tone. Neurosci Lett 55:255–260

    Google Scholar 

  • Lovick TA (1987a) Cardiovascular control from neurones in the ventrolateral medulla. In: Taylor EW (ed) Studies in neuroscience. Manchester University Press, Manchester (In press)

    Google Scholar 

  • Lovick TA (1987b) Differential control of cardiac and vasomotor activity by neurones in nucleus paragigantocellularis lateralis in the cat. J Physiol (Lond) 389:23–35

    Google Scholar 

  • Lovick TA, Hilton SM (1985) Vasodilator and vasoconstrictor neurones of the ventrolateral medulla in the cat. Brain Res 331:353–357

    Google Scholar 

  • Lovick TA, Hilton SM (1986) Cardiovascular neurones in the ventral medulla. J Auton Nerv Syst (Suppl) 121–124

    Google Scholar 

  • Lovick TA, Hunt SP (1983) Substance P immunoreactive and serotonin containing neurones in the ventral medulla of the cat. Neurosci Lett 36:223–228

    Google Scholar 

  • Low PA, Okazaki H, Dyck PJ (1977) Splanchnic preganglionic neurones in man. Acta Neuropathol (Berl) 40:55–61

    Google Scholar 

  • Luiten PGM, ter Horst GJ, Karst H, Steffens AB (1985) The course of paraventricular hypothalamic efferents to autonomic structures in medulla and spinal cord. Brain Res 329:374–378

    Google Scholar 

  • Lund S, Pompeiano O (1968) Monosynaptic excitation of alpha motoneurones from supraspinal structures in the cat. Acta Physiol Scand 73:1–21

    Google Scholar 

  • Lundberg JM, Hockfelt T, Anggard A, Kimmel J, Goldstein M, Markey K (1980) Co-existance of an avian pancreatic polypeptide (APP) immunoreactive substance with catecholamines in some peripheral and central neurones. Acta Physiol Scand 110:107–109

    Google Scholar 

  • Ma RC, Dun NJ (1985a) Norepinephrine depolarises lateral horn cells of neonatal rat spinal cord in vitro. Neurosci Lett 60:163–168

    Google Scholar 

  • Ma RC, Dun NJ (1985b) Vasopressin depolarises lateral horn cells of the neonatal rat spinal cord in vitro. Brain Res 348:36–43

    Google Scholar 

  • Ma RC, Dun NJ (1986) Excitation of lateral horn neurones in neonatal rat spinal cord by 5-hydroxytryptamine. Brain Res 24:89–98

    Google Scholar 

  • MacDonald RL, Cohen DH (1970) Cells of origin of sympathetic pre-and post-ganglionic cardioacceleratory fibres in the pigeon. J Comp Neurol 40:343–358

    Google Scholar 

  • Magnusson T (1973) Effect of chronic transection on DA, NA and 5-HT in the rat spinal cord. Naunyn-Schmiedebergs Arch Exp Pathol Pharmakol 278:13–22

    Google Scholar 

  • Malliani A (1979) Afferent cardiovascular sympathetic nerve fibres and their function in the neural regulation of the circulation. In: Hainsworth R, Kidd C, Linden RJ (eds) Cardiac receptors. Cambridge University Press, Cambridge, pp 319–338

    Google Scholar 

  • Malliani A, Lombardi F, Pagani M (1981) Functions of afferents in cardiovascular sympathetic nerves. J Auton Nerv Syst 3:231–236

    Google Scholar 

  • Malliani A, Pagani M, Pizzinella P, Furlan R, Guzzetti S (1983) Cardiovascular reflexes mediated by sympathetic afferent fibres. J Auton Nerv Syst 7:295–301

    Google Scholar 

  • Mannard A, Polosa C (1973) Analysis of background firing of single sympathetic preganglionic neurones of cat cervical nerve. J Neurophysiol: 36:398–408

    Google Scholar 

  • Mannard A, Rajchgot P, Polosa C (1977) Effect of post-impulse depression on background firing of sympathetic preganglionic neurones. Brain Res 126:243–261

    Google Scholar 

  • Marino PL, Lamb TW (1975) Effect of CO2 and the extra-cellular H+ iontophoresis on single cell activity in the cat brainstem. J Appl Physiol 38:688–695

    Google Scholar 

  • Marson L, Loewy AD (1985) Topographical organisation of substance P and monoamine cells in the ventral medulla of the cat. J Auton Nerv Syst 14:271–285

    Google Scholar 

  • Martin GF, Humbertson AO, Laxson C, Panneton WM (1979) Evidence for direct bulbospinal projections to lamina, IX, X and the intermediolateral cell column. Studies using axonal transport techniques in the North American opposum. Brain Res 170:165–171

    Google Scholar 

  • Martin GF, Cabana T, DiTirro FJ, Ho RH, Humberston AO (1982) Reticular and raphe projections to the spinal cord of the North American opossum. Evidence for connectional heterogeneity. Prog Brain Res 57:109–129

    Google Scholar 

  • Massazza A (1923a) La citoarchitettonica del midollo spinale umano. Riv Pathol Nerv Ment 28:22–43

    Google Scholar 

  • Massazza A (1922) La citoarchitettonica del midollo spinale umano. Nota I. Arch Anat Histol Embryol (Strasb) 1:323–410

    Google Scholar 

  • Massazza A (1923b) La citoarchitettonica del midollo spinale umano. Nota II. Arch Anat Histol Embryol (Strasb) 2:1–56

    Google Scholar 

  • Massazza A (1924) La citoarchitettonica del midolla spinale umano. Nota III. Arch Anat Histol Embryol (Strasb) 3:115–189

    Google Scholar 

  • Mathison GC (1910) The action of asphyxia upon the spinal animal. J Physiol (Lond) 41:416–449

    Google Scholar 

  • Maurin Y, Buck SH, Wamsley JK, Burke TF, Yamamura HI (1984) Light microscopic autoradiographic localisation of (3H) substance P binding sites in the rat thoracic spinal cord. Life Sci 34:1713–1716

    Google Scholar 

  • Mayer S (1876) Studien zur Physiologie des Herzens und der Blutgefäße. V. Über spontane Blutdruckschwankungen. Akad Wiss Wien Math Naturwiss 74:281–307

    Google Scholar 

  • McAllen RM (1985) Bulbospinal neurones of the “glycine sensitive” area in the cat. J Physiol (Lond) 361:48

    Google Scholar 

  • McAllen RM (1986a) Location of neurones with cardiovascular and respiratory function at the ventral surface of the cats medulla. Neuroscience 18:43–49

    Google Scholar 

  • McAllen RM (1986b) Action and specificity of ventral medullary vasopressor neurones in the cat. Neuroscience 18:51–59

    Google Scholar 

  • McAllen RM, Neil JJ, Loewy AD (1982) Effects of kainic acid applied to the ventral surface of the medulla oblongata on vasomotor tone, the baroreceptor reflex and hypothalamic autonomic responses. Brain Res: 238:65–76

    Google Scholar 

  • McCall RB (1983) Serotonergic excitation of sympathetic preganglionic neurones: microiontophoretic study. Brain Res 289:121–127

    Google Scholar 

  • McCall RB (1984) Evidence for serotonergically mediated sympatho-excitatory response to stimulation of medullary raphe nuclei. Brain Res 311:131–139

    Google Scholar 

  • McCall RB, Gebber GL (1975) Brain stem and spinal synchronisation of sympathetic neurone discharge. Brain Res 89:139–143

    Google Scholar 

  • McCall RB, Gebber GL, Barman SM (1977) Spinal interneurones in the baroreceptor reflex arc. Am J Physiol 236:H657–H665

    Google Scholar 

  • McKellar S, Loewy AD (1982) Efferent projections of the A1 catecholamine cell groups in the rat: an autoradiographic study. Brain Res 241:11–29

    Google Scholar 

  • McKenna KE, Schramm LP (1985) Mechanisms mediating the sympathetic silent period: studies in the isolated spinal cord of the neonatal rat. Brain Res 329:233–240

    Google Scholar 

  • McLachlan EM, Hirst GDS (1980) Some properties of preganglionic neurones in the upper thoracic spinal cord of the cat. J Neurophysiol 43:1251–1265

    Google Scholar 

  • McLachlan EM, Oldfield BJ, Sittiracha T (1985) Localisation of hind limb vasomotor neurones in the lumbar spinal cord of the guinea pig. Neurosci Lett 54:269–275

    Google Scholar 

  • Meckler RL, Weaver LC (1985) Splenic, renal and cardiac nerves have unequal dependence upon tonic supraspinal inputs. Brain Res 338:123–135

    Google Scholar 

  • Meites J, Branei JF, Van Vugt DA, Smith AF (1978) Relation of endogenous opioid peptides and morphine to neuroendocrine function. Life Sci 24:1325–1336

    Google Scholar 

  • Mendelsohn FAO, Quirion R, Saavedra JM, Aquilera G, Catt KJ (1984) Autoradiographic localisation of angiotensin II receptors in rat brain Proc Natl Acad Sci USA 81:1575–1579

    Google Scholar 

  • Millan MJ, Millan MH, Czlonkowski A, Herz A (1984a) Vasopressin and oxytocin in the rat spinal cord: distribution and origins in comparison to [metenkephalin], dynorphin and related opioids and their irresponsiveness to stimuli modulating neuro-hypophyseal secretion. Neuroscience 13:179–187

    Google Scholar 

  • Millan MJ, Millan MH, Czlonkowski A, Herz A (1984b) Contrasting interactions of the locus coeruleus as comparison to ventral noradrenergic bundle with CNS and pituitary pools of vasopressin, dynorphin and related opioid peptides in the rat. Brain Res 298:243–252

    Google Scholar 

  • Miller RJ, Cuatrecasas P (1978) Enkephalins and endorphins. In: Munson PL, Glover J, Diczfusy E, Olsen RE (eds) Vitamins and hormones, vol 36. Academic, New York, pp 297–382

    Google Scholar 

  • Millhorn DE, Eldridge FL (1986) Role of ventrolateral medulla in regulation of respiratory and cardiovascular systems (a review). J Appl Physiol 61:1249–1263

    Google Scholar 

  • Mitchell RA, Herbert DA (1974) The effect of carbon dioxide on the membrane potential of medullary respiratory neurones. Brain Res 75:345–349

    Google Scholar 

  • Mizukawa K (1980) The segmental detailed topographical distribution of monoaminergic terminals and their pathways in the spinal cord of the cat. Anat Anz 147:125–144

    Google Scholar 

  • Mo N, Dun NJ (1987) Is glycine an inhibitory transmitter in rat lateral horn cells? Brain Res 400:139–144

    Google Scholar 

  • Morrison SF, Gebber GL (1984) Raphe neurones with sympathetic related activity: baroreceptor responses and spinal connections. Am J Physiol 243:R49–R59

    Google Scholar 

  • Murata Y, Shibata H, Chiba T (1982) A correlative quantitative study comparing the nerve fibres in the cervical sympathetic trunk and the locus of the somata from which they originate in the rat. J Auton Nerv Syst 6:323–333

    Google Scholar 

  • Nakayama S, von Baumgarten R (1964) Lokalisierung absteigender Atmungsbahnen im Rückenmark der Katze mittels antidromer Reizung. Pflügers Arch 281:231–244

    Google Scholar 

  • Nauta HJW, Pritz MB, Lusek RJ (1974) Afferents to the rat caudoputamen studied with horseradish peroxidase. An evaluation of retrograde neuroanatomical research method. Brain Res 67:219–238

    Google Scholar 

  • Navaratnam V, Lewis PR (1970) Cholinesterase containing neurones in the spinal cord of the rat. Brain Res 18:411–425

    Google Scholar 

  • Neil JJ, Loewy AD (1982) Decreases in blood pressure in response to L-glutamate microinjections in the A5 catecholamine cell group. Brain Res 241:271–278

    Google Scholar 

  • Neuhuber W (1982) The central projections of visceral primary afferent neurones of the inferior mesenteric plexus and hypogastric nerve and the location of the related sensory and preganglionic cell bodies in the rat. Anat Embryol (Berl) 164:413–425

    Google Scholar 

  • Neumayr RJ, Hare BD, Franz DN (1974) Evidence for bulbospinal control of sympathetic neurones by monoaminergic pathways. Life Sci. 14:793–806

    Google Scholar 

  • Nicholaidis S, Ishibashi S, Gueguen B, Thornton SN, de Beaurepaire R (1984) Iontophoretic investigation of identified SFO angiotensin-responsive neurones firing in relation to blood pressure changes. Brain Res Bull 10:357–363

    Google Scholar 

  • Nicholl RA, Barker JL (1971) Excitation of supraoptic neurosecretory cells by angiotensin II. Nature 233:172–174

    Google Scholar 

  • Nijima A (1971) Afferent discharges from arterial mechanoreceptors in the kidney of the rabbit. J Physiol (Lond) 219:477–485

    Google Scholar 

  • Nilaver G, Zimmerman EA, Wilkins J, Michaels J, Hoffman D, Silverman AJ (1980) Magnocellular hypothalamic projections to the lower brain stem and spinal cord of the rat. Neuroendocrinology 30:150–158

    Google Scholar 

  • Ninomiya I, Nisimaru N, Irisawa H (1971) Sympathetic nerve activity to the spleen, kidney and heart in response to baroreceptor input. Am J Physiol 221:1346–1351

    Google Scholar 

  • Nisimaru N (1971) Comparison of gastric and renal nerve activity. Am J Physiol 220:1303–1308

    Google Scholar 

  • Niwa M, Shigematsu K, Saavedra JM (1986) Changes in substance P receptors of the intermediolateral cell column of the thoracic spinal cord of young spontaneously hypertensive rats. In: Nakamura K (ed) Brain and blood pressure control. Elsevier, Amsterdam, pp 225–230

    Google Scholar 

  • Nobin A, Björklund A (1973) Topography of monoamine systems in the human brain as revealed in fetuses. Acta Physiol Scand 88 Suppl 388 1–4

    Google Scholar 

  • Nygren OG, Olsen L (1977) Intracisternal neurotoxins and monoamine neurones innervating the spinal cord: acute and chronic effects on cell and axon counts and nerve terminal densities. Histochemistry 52:281–306

    Google Scholar 

  • Ogawa N, Yamawaki Y, Kuroda H, Ofuji T, Itoga E, Kito S (1981) Discrete regional distributions of thyrotropin-releasing hormone (TRH) receptor binding in monkey central nervous system. Brain Res 205:169–174

    Google Scholar 

  • Ohye C, Bouchard R, Poirier LJ (1970) Spontaneous activity of the putamen after chronic interruption of the dopaminergic pathway: effect of L-dopa. J Pharmacol Exp Ther 175:700–708

    Google Scholar 

  • Okada H, Fox IJ (1967) Respiratory grouping of abdominal sympathetic activity in the dog. Am J Physiol 213:48–56

    Google Scholar 

  • Oldfield BJ, McLachlan EM (1981) An analysis of the sympathetic preganglionic neurones projecting from the upper thoracic spinal roots of the cat. J Comp Neurol 196:239–345

    Google Scholar 

  • Oliver C, Eskay RL, Ben-Jonathan N, Porter JC (1974) Distribution and concentration of TRH in rat brain. Endocrinology 95:540

    Google Scholar 

  • Ono T, Nishimo H, Sasaka K, Yano I, Simpson A (1978) Paraventricular nucleus connections to the spinal cord and pituitary. Neurosci Lett 10:141–146

    Google Scholar 

  • Onuf B (1900) On the arrangement and function of the cell groups of the sacral region of the spinal cord in man. Arch Neurol Psychopathol 3:387–412

    Google Scholar 

  • Onuf B, Collins J (1898) Experimental researches on the localisation of sympathetic nerve in the spinal cord and brain, and contributions to its physiology. J Nerv Ment Dis 25:661–678

    Google Scholar 

  • Otsuka M, Takahashi T (1977) Putative peptide neurotransmitters. Annu Rev Pharmacol Toxicol 17:425–439

    Google Scholar 

  • Pagani M, Schwartz P, Banks R, Lombadi F, Malliani A (1974) Reflex responses of sympathetic preganglionic neurones initiated by different cardiovascular receptors in spinal animals. Brain Res 68:215–225

    Google Scholar 

  • Palkovits M, Jacobowitz DM (1974) Topographical atlas of catecholamine and acetylcholinesterase-containing neurones in the rat brain. II. Hindbrain (mesencephalon, rhombencephalon). J Comp Neurol 157:29–42

    Google Scholar 

  • Papajewski W, Klee MR, Wagner A (1969) The action of raised CO2 pressure on the excitability of spinal motoneurones. Electroencephalogr Clin Neurophysiol 17:618 (Abstr)

    Google Scholar 

  • Pardini BJ, Wurster RD (1984) Identification of the sympathetic preganglionic pathway to the cat stellate ganglion. J Auton Nerv Syst 11:13–25

    Google Scholar 

  • Parent A (1973) Demonstration of a catecholamine pathway from the midbrain to the strioamygdaloid complex in the turtle (Chrysemys picta). J Anat 114:379–387

    Google Scholar 

  • Parent A (1975) The monoaminergic innervation of the telencephalon of the frog, Rana pipiens. Brain Res 99:35–47

    Google Scholar 

  • Parent A (1978) Monoaminergic systems of the brain. In: Gans C, Ulinski P, Northcutt RG (eds) Biology of the reptilia. Academic London, pp 247–285

    Google Scholar 

  • Pearson J, Pytel BA (1978) Quantitative studies of sympathetic ganglion and spinal cord intermediolateral grey columns in familial dysautonomia. J Neurol Sci 39:47–59

    Google Scholar 

  • Perri V, Sachi O, Casella C (1970) Electrical properties and synaptic connections of the sympathetic neurones in the rat and guinea pig superior cervical ganglion. Pfügers Arch 314:40–54

    Google Scholar 

  • Peterson BW, Maunz RA, Pitts NG, Macken RG (1975) Patterns of projecting and branching of reticulospinal neurones. Exp Brain Res 23:333–351

    Google Scholar 

  • Peterson BW, Pitts NG, Fukishima K (1979) Reticulospinal connections with limb and axial motoneurones. Exp Brain Res 36:1–20

    Google Scholar 

  • Petras JM, Cummings JF (1972) Autonomic neurones in the spinal cord of the rhesus monkey: correlation of the findings of cytoarchitectonics and sympathectomy with fibre degeneration following dorsal rhizotomy. J Comp Neurol 146:189–218

    Google Scholar 

  • Petras JM, Faden AI (1978) The origin of sympathetic preganglionic neurones in the dog. Brain Res 144:353–357

    Google Scholar 

  • Phillips JW, Linacher JJ (1974) Excitation of cerebral cortical neurones by various polypeptides. Exp Neurol 43:414–423

    Google Scholar 

  • Phillips MI, Nelson PG, Neal E, Quinlan J (1980) Angiotensin-induced phasic firing of spinal cord neurones in culture. Soc Neurosci Abstr 6:619

    Google Scholar 

  • Pilowsky P, West M, Chalmers J (1985) Renal sympathetic nerve responses to stimulation, inhibition and destruction of the ventrolateral medulla in the rabbit. Neurosci Lett 60:51–55

    Google Scholar 

  • Pilowsky PM, Kapoor V, Minson JB, West MJ, Chalmers JP (1986) Spinal cord serotonin release and raised blood pressure after brainstem kainic acid injection. Brain Res 366:354–357

    Google Scholar 

  • Pin C, Jones B, Jouvet M (1968) Topographie des neurones monoaminergiques du cérébral du chat: étude par histofluorescence. CR Soc Biol (Paris) 162:21–36

    Google Scholar 

  • Pitts RF, Bronk DW (1942) Excitability cycle of the hypothalamus sympathetic nervous system. Am J Physiol 135:504–522

    Google Scholar 

  • Poitras D, Parent A (1978) Atlas of the distribution of monoamine-containing nerve cell bodies in the brainstem of the cat. J Comp Neurol 179:699–718

    Google Scholar 

  • Poljak S (1924) Die Struktureigentümlichkeiten des Rückenmarkes bei den Chiroptern. Zugleich ein Beitrag zu der Frage über die spinalen Zentren des Sympatheticus. Z Anat Entwicklungsgesch 74:509–576

    Google Scholar 

  • Polosa C (1967) Silent period of sympathetic preganglionic neurones. Can J Physiol Pharmacol 45:1033–1045

    Google Scholar 

  • Polosa C (1968) Spontaneous activity of sympathetic preganglionic neurones. Can J Physiol Pharmacol 46:887–896

    Google Scholar 

  • Polosa C, Rosenberg P, Mannard A, Wolkove N, Wyszogrodski I (1969) Oscillatory behaviour of the sympathetic system induced by picrotoxin. Can J Physiol Pharmacol 47:815–826

    Google Scholar 

  • Polosa C, Mannard A, Laskey W (1979) Tonic activity in the autonomic nervous system; functions, properties, origins. In: Brooks CM, Koizumi K, Sato A (eds) Integrative functions of the autonomic nervous system. University of Tokyo Press, Tokyo, pp 342–354

    Google Scholar 

  • Polosa C, Gerber U, Schondorf R (1980) Central mechanisms of interaction between sympathetic preganglionic neurones and the respiratory oscillator. In: Koepchen HP, Hilton SM, Trzebski A (eds) Central interactions between respiratory and cardiovascular control systems. Springer, Berlin Heidelberg New York, pp 137–143

    Google Scholar 

  • Polosa C, Schondorf R, Laskey W (1982) Stabilisation of the discharge rate of sympathetic preganglionic neurones. J Auton Nerv Syst 5:45–54

    Google Scholar 

  • Pomeranz B, Wall PD, Weber WV (1968) Cord cells responding to fine myelinated afferents from viscera, muscle and skin. J Physiol (Lond) 199:511–532

    Google Scholar 

  • Porter JP, Brody MJ (1985) Role of spinal vasopressinergic mechanisms in the cardiovascular effects produced by stimulation of the paraventricular nucleus. Soc Neurosci Abstr 11:P36

    Google Scholar 

  • Preiss G, Polosa C (1974) Patterns of sympathetic activity associated with Mayer waves. Am J Physiol 226:724–730

    Google Scholar 

  • Preiss G, Polosa C (1977) The relation between end-tidal CO2 and discharge patterns of sympathetic preganglionic neurones. Brain Res 122:255–267

    Google Scholar 

  • Preiss G, Kirchner F, Polosa C (1975) Patterning of sympathetic preganglionic neurone firing by the central respiratory drive. Brain Res 87:363–374

    Google Scholar 

  • Prout BJ, Coote JH, Downman CBB (1964) Supraspinal inhibition of a cutaneous vascular reflex in the cat. Am J Physiol 202:303–307

    Google Scholar 

  • Prout BJ, Coote JH, Downman CBB (1965) Independence of central controls of vascular and sweat gland responses in the paw of the cat. J Neurol Neurosurg Psychiatry 28:223–227

    Google Scholar 

  • Przybyla AC, Wang SC (1967) Neurophysiological characteristics of cardiovascular neurones in the medulla oblongata of the cat. J Neurophysiol 30:645–660

    Google Scholar 

  • Ramage AG (1985) The effects of ketanserin, methysergide and LY53857 on sympathetic nerve activity. Eur J Pharmacol 113:295–303

    Google Scholar 

  • Randic M, Miletic V (1978) Depressent actions of methionine-enkephalin and somatostatin on cat dorsal horn neurones activated by noxious stimuli. Brain Res 152:196–202

    Google Scholar 

  • Rando TA, Bowers CW, Zigmond RE (1981) Localisation of neurones in the rat spinal cord which project to the superior cervical ganglion. J Comp Neurol 196:73–83

    Google Scholar 

  • Rang HP, Ritchie JM (1968) On the electrogenic sodium pump in mammalian non-myelinated nerve fibres and its activation by various external cations. J Physiol (Lond) 196:183–221

    Google Scholar 

  • Ranson SW (1913) The course within the spinal cord of the non-medullated fibres of the spinal dorsal roots: a study of Lissauer's tract in the cat. J Comp Neurol 23:259–274

    Google Scholar 

  • Ranson SW, Billingsley PR (1916) Afferent spinal paths and the vasomotor reflexes. Studies on vasomotor reflex arcs VI. Am J Physiol 42:16–35

    Google Scholar 

  • Rao UC, Bijlani V (1980) The intermediolateral gray column in the spinal cord of Macaca mulatta. J Auton Nerv Syst 2:259–267

    Google Scholar 

  • Recordati GM, Moss NG, Waselkov L (1978) Renal chemoreceptors in the rat. Circ Res 43:534–543

    Google Scholar 

  • Recordati GM, Moss NG, Genovesi S, Rogenes P (1980) Renal receptors in the rat sensitive to chemical alterations of their environment. Circ Res 46:395–405

    Google Scholar 

  • Recordati G, Genovesi S, Cerati D (1982) Renorenal reflexes in the rat elicited upon stimulation of renal chemoreceptors. J Auton Nerv Syst 6:127–142

    Google Scholar 

  • Reid JL, Zivin JA, Foppen F, Kopin IJ (1975) Catecholamine neurotransmitters and synthetic enzymes in the rat spinal cord. Life Sci 16:975–984

    Google Scholar 

  • Renaud LP, Martin JB, Brazeau P (1978) Depressant action of TRH, LH-RH and somatostatin on activity of central neurones. Nature 255:233–235

    Google Scholar 

  • Renshaw B (1941) Influence of discharge of motoneurones upon excitation of neighbouring motoneurones. J Neurophysiol 4:167–183

    Google Scholar 

  • Rethelyi M (1972) Cell and neuropil architecture of the intermediolateral (sympathetic) nucleus of the cat spinal cord. Brain Res 46:203–213

    Google Scholar 

  • Rethelyi M (1974) Spinal transmission of autonomic processes. J Neural Transm (Suppl) 11:195–212

    Google Scholar 

  • Rexed B (1954) A cytoarchitectonic atlas of the spinal cord in the cat. J Comp Neurol 100:297–379

    Google Scholar 

  • Riedel W, Iriki M, Simon E (1972) Regional differentiation of sympathetic activity during peripheral heating and cooling in anaesthetised rabbits. Pflügers Arch 322:239–247

    Google Scholar 

  • Riley HA (1960) An atlas of the basal ganglia, brain stem and spinal cord. Hafner, New York

    Google Scholar 

  • Riphagen CL, Pittman QT (1985) Cardiovascular responses to intrathecal administration of arginine vasopressin in rats. Peptides 10:293–298

    Google Scholar 

  • Riphagen CL, Bauce L, Veale WL, Pittman QJ (1986) The effects of intrathecal administration of arginine-vasopressin and substance P on blood pressure and adrenal secretion of epinephrine in rats. J Auton Nerv Syst 16:91–99

    Google Scholar 

  • Rizzoli AA (1968) Distribution of glutamic acid, aspartic acid, γ-aminobutyric acid and glycine in six areas of cat spinal cord before and after transection. Brain Res 11:11–18

    Google Scholar 

  • Robertson DR (1987) Sympathetic preganglionic neurones in frog spinal cord. J Auton Nerv Syst 18:1–11

    Google Scholar 

  • Rogenes PR (1982) Single unit and multiunit analysis of renorenal reflexes elicited by stimulation of renal chemoreceptors in the rat. J Auton Nerv Syst 6:143–156

    Google Scholar 

  • Rohlicek CV, Polosa C (1981) Hypoxic responses of sympathetic preganglionic neurones in the acute spinal cat. Am J Physiol 241:H679–H683

    Google Scholar 

  • Rohlicek CV, Polosa C (1983) Hypoxic responses of sympathetic preganglionic neurones in sinoaortic-denervated cats. Am J Physiol 244:H681–H686

    Google Scholar 

  • Romanes GJ (1951) The motor cell columns of the lumbo-sacral spinal cord of the cat. J Comp Neurol 94:313–363

    Google Scholar 

  • Ross CA, Ruggiero DA, Joh TH, Park DH, Reis DJ (1983) Adrenaline synthesising neurones in the rostral ventrolateral medulla: a possible role in tonic vasomotor control. Brain Res 273:356–361

    Google Scholar 

  • Rubin E, Purves D (1980) Segmental organisation of sympathetic preganglionic neurones in the mammalian spinal cord. J Comp Neurol 192:163–174

    Google Scholar 

  • Saavedra JM, Palkovits M, Brownstein M, Axelrod J (1974) Serotonin distribution in the nuclei of rat hypothalamus and preoptic region. Brain Res 77:157–165

    Google Scholar 

  • Salisbury PF, Cross CE, Rieben PA (1960) Reflex effects of the left ventricular distension. Circ Res 8:530–534

    Google Scholar 

  • Sangdee C, Franz DN (1979) Enhancement of central norepinephrine and 5-hydroxtrypamine transmission by tricyclic antidepressants: a comparison. Psychopharmacology (Berlin) 62:9–16

    Google Scholar 

  • Sangdee C, Franz DN (1983) Evidence for inhibition of sympathetic preganglionic neurones by bulbospinal epinephrine pathways. Neurosci Lett 37:167–173

    Google Scholar 

  • Saper CB, Loewy AD (1980) Efferent connections of the parabrachial nucleus in the rat. Brain Res 197:291–317

    Google Scholar 

  • Saper CB, Loewy AD, Swanson LW, Cowans WM (1976) Direct hypothalamic-autonomic connections. Brain Res 117:305–312

    Google Scholar 

  • Sarnoff SJ, Yamada SI (1959) Evidence for reflex control of arterial blood pressure from abdominal receptors with special reference to the pancreas. Circ Res 7:325–335

    Google Scholar 

  • Sato A (1972a) Somato-sympathetic reflex discharges evoked through supramedullary pathways. Pflügers Arch 332:117–126

    Google Scholar 

  • Sato A (1972b) The relative involvement of different reflex pathways in somato-sympathetic reflexes, analysed in spontaneously active single preganglionic sympathetic units. Pflügers Arch 333:70–81

    Google Scholar 

  • Sato A (1972c) Spinal and supraspinal inhibition of somato-sympathetic reflexes by conditioning afferent volleys. Pflügers Arch 336:121–133

    Google Scholar 

  • Sato A (1973) Spinal and medullary components of the somato-sympathetic reflex discharges evoked by stimulation of the group IV somatic afferents. Brain Res 51:307–318

    Google Scholar 

  • Sato A, Schmidt RF (1966) Muscle and cutaneous afferents evoking sympathetic reflexes. Brain Res 2:399–401

    Google Scholar 

  • Sato A, Schmidt RF (1971) Spinal and supraspinal components of the reflex discharges into lumbar and thoracic white rami. J Physiol (Lond) 212:839–850

    Google Scholar 

  • Sato A, Schmidt RF (1973) Somato-sympathetic reflexes: afferent fibres, central pathways, discharge characteristics. Physiol Rev 53:916–947

    Google Scholar 

  • Sato A, Tsushima N, Fujimori B (1965) Reflex potentials of lumbar sympathetic trunk with sciatic nerve stimulation in cats. Jpn J Physiol 15:532–539

    Google Scholar 

  • Sato A, Sato I, Ozawa I, Fujimori B (1967) Further observation of the reflex potential in the lumbar sympathetic trunk. Jpn J Physiol 17:294–307

    Google Scholar 

  • Sato A, Kaufman A, Koizumi K, Brooks CM (1969) Afferent nerve groups and sympathetic reflex pathways. Brain Res 14:575–587

    Google Scholar 

  • Sato A, Sato Y, Shimada F, Torigata Y (1975) Changes in gastric motility produced by nociceptive stimulation of the skin in rats. Brain Res 94:465–474

    Google Scholar 

  • Sato Y, Terui N (1976) Changes in the duodenal motility produced by noxious mechanical stimulation of the skin in rats. Neurosci Lett 2:189–193

    Google Scholar 

  • Satoh K, Tohiyama M, Yamamoto K, Sukumoto T, Shimizu N (1977) Noradrenaline innervation of the spinal cord: studies by the horseradish peroxidase method combined with monoamine oxidase staining. Exp Brain Res 30:175–186

    Google Scholar 

  • Schiebel ME, Schiebel AB (1968) Terminal axonal patterns in cat spinal cord. II. The dorsal horn. Brain Res 9:32–58

    Google Scholar 

  • Schimert J (1939) Das Verhalten der Hinter-würzelkollateralen im Rückenmark. Z Anat Entwicklungsgesch 109:665–687

    Google Scholar 

  • Schläfke ME, Loeschke HH (1967) Lokalisation eines an der Regulation von Atmung und Kreislauf beteiligten Gebietes an der ventralen Oberfläche der Medulla Oblongata durch Kälteblockade. Pflügers Arch 297:201–220

    Google Scholar 

  • Schläfke ME, See WR (1980) Ventral medullary surface stimulus response in relation to ventilatory and cardiovascular effects. In: Koepchen HP, Hilton SM, Trzebski A (eds) Central interaction between respiratory and cardiovascular control systems. Springer, Berlin Heidelberg New York, pp 56–63

    Google Scholar 

  • Schmidt RF (1974) Pre-and postganglionic neurones as final common path of somato-sympathetic reflexes. In: Umbach W, Koepchen HP (eds) Central rhythmic and regulation. Hippokrates, Stuttgart, pp 178–190

    Google Scholar 

  • Schmidt RF, Schönfuss K (1970) An analysis of the reflex activity in the cervical sympathetic trunk induced by myelinated somatic afferents. Pflügers Arch 314:175–198

    Google Scholar 

  • Schmidt RF, Weller E (1970) Reflex activity in the cervical and lumbar sympathetic trunk induced by unmyelinated afferents. Brain Res 24:207–218

    Google Scholar 

  • Schondorf R, Laskey W, Polosa C (1983) Upper thoracic sympathetic neurone responses to input from urinary afferents. Am J Physiol 245:R311–R320

    Google Scholar 

  • Schramm LP, Adair JR, Stribling JM, Gray LP (1975) Preganglionic innervation of the adrenal gland of the rat: a study using horseradish peroxidase. Exp Neurol 49:540–553

    Google Scholar 

  • Schramm LP, Stribling JM, Adair JR (1976) Developmental reorientation of sympathetic preganglionic neurones in the rat. Brain Res 106:166–171

    Google Scholar 

  • Schramm LP, Howland EW, McKenna KE, Barton GN (1979) Spinal pathways mediating splanchnic sympathetic excitation and sympathetic silent periods in the rat. Brain Res 167:396–401

    Google Scholar 

  • Schroder HD (1985) Anatomical and pathoanatomical studies on the spinal efferent systems innervating pelvic structures. J Auton Nerv Syst 14:23–48

    Google Scholar 

  • Sears TA (1964) The slow potentials of thoracic respiratory motoneurones and their relation to breathing. J Physiol (Lond) 175:404–424

    Google Scholar 

  • Sell R, Erdelyi A, Schaefer H (1958) Untersuchungen über den Einfluß peripherer Nervenreizung auf die sympathische Aktivität. Pflügers Arch 267:566–581

    Google Scholar 

  • Seller H (1973) The discharge pattern of single units in thoracic and lumbar white rami in relation to cardiovascular events. Pflügers Arch 343:317–330

    Google Scholar 

  • Selzer M, Spencer WA (1969) Interactions between visceral and cutaneous afferents in the spinal cord: reciprocal primary afferent fibre depolarisation. Brain Res 14:349–366

    Google Scholar 

  • Silver A, Wolstencroft JH (1971) The distribution of cholinesterase in relation to the structure of the spinal cord in the cat. Brain Res 34:205–227

    Google Scholar 

  • Simon OR, Schramm LP (1983) Spinal superfusion of dopamine excites renal sympathetic nerve activity. Neuropharmacology 18:697–700

    Google Scholar 

  • Simon OR, Schramm LP (1984) The spinal cord and medullary termination of myelinated renal afferents in the cat. Brain Res 290:239–247

    Google Scholar 

  • Sinha JN, Atkinson JM, Schmidt H (1973) Effects of clonidine and L-dopa on spontaneous and evoked splanchnic nerve discharges. Eur J Pharmacol 24:113–119

    Google Scholar 

  • Skok V, Ivanov AY (1983) What is the ongoing activity of sympathetic neurones? J Auton Nerv Syst 7:263–270

    Google Scholar 

  • Skok VI (1980) Ganglionic transmission: morphology and physiology. In: Kharkevich DA (ed) Pharmacology of ganglionic transmission. Springer, Berlin Heidelberg New York, pp 9–39

    Google Scholar 

  • Smith OA (1965) Anatomy of central neural pathways mediating cardiovascular functions. In: Randall, WC (ed) Nervous control of the heart. Williams and Wilkins, Baltimore, pp 34–53

    Google Scholar 

  • Smits JFM, Brody MJ (1984) Activation of afferent renal nerves by intrarenal bradykinin in conscious rats. Am J Physiol 247:R1003–R1008

    Google Scholar 

  • Smits JFM, van Essen H, Struyker Boudier HAJ (1978) Serotonin-mediated cardiovascular responses to electrical stimulation of the raphe nuclei in the rat. Life Sci 23:173–178

    Google Scholar 

  • Smolen AJ, Glazer EJ, Ross LL (1979) Horseradish peroxidase histochemistry combined with glyoxylic acid induced fluorescence used to identify brainstem catecholaminergic neurones which project to the chick thoracic spinal cord. Brain Res 160:353–357

    Google Scholar 

  • Sofroniew MV (1980) Projections from vasopressin, oxytocin and neurophysin neurones to neural targets in the rat and human. J Histochem Cytochem 28:475–478

    Google Scholar 

  • Sofroniew MV, Weindl A (1981) Central nervous distribution of vasopressin, oxytocin and neurophysin. In: Martinez JL, Jenson RA, Messing RB, Rigter H, McGaugh JL (eds) Endogenous peptides, learning and memory process. Academic, New York, pp 377–389

    Google Scholar 

  • Spindel E, Wurtman RJ (1980) TRH immunoreactivity in rat brain regions, spinal cord and pancreas: validation by high pressure liquid chromatography and thin layer chromatography. Brain Res 201:279–288

    Google Scholar 

  • Spyer KM (1981) Neural organisation and control of the baroreceptor reflex. Rev Physiol Biochem Pharmacol 88:24–124

    Google Scholar 

  • Stanek KA, Neil JJ, Sawyer WB, Loewy AD (1984) Changes in regional blood flow and cardiac output after L-glutamate stimulation of A5 cell group. Am J Physiol 246:H44–H51

    Google Scholar 

  • Stein RD, Genovesis S, Demarest K, Weaver LC (1986) Capsaicin treatment attenuates the reflex excitation of sympathetic activity caused by chemical stimulation of intestinal afferent nerves. Brain Res 397:145–151

    Google Scholar 

  • Steinbusch HWM (1981) Distribution of serotonin immunoreactivity in the central nervous system of the rat: cell bodies and terminals. Neuroscience 6:557–618

    Google Scholar 

  • Stella A, Colin R, Busnardo I, Zanchetti A (1984) Effects of afferent renal nerve stimulation on renal hemodynamic and excretory functions. Am J Physiol 247:H576–H583

    Google Scholar 

  • Stock G, Schmelz M, Knuepfer M, Forssman WG (1983) Functional and anatomic aspects of central nervous cardiovascular regulation. In: Ganten D, Pfaff D (eds) Central cardiovascular control. Springer, Berlin Heidelberg New York, pp 1–30 (Current topics in neuroendocrinology, vol 3)

    Google Scholar 

  • Sudakov KV, Sherstnev VV, Osipovskii SD (1976) Direct action of angiotensin II on central neurones. Bull Exp Biol Med (Rus) 82:899–902

    Google Scholar 

  • Sun MK, Guyenet PG (1985) GABA mediated baroreceptor inhibition of reticulo-spinal neurones. Am J Physiol 249:R672–R680

    Google Scholar 

  • Suter C, Coote JH (1987) Intrathecally administrated angiotensin II increases sympathetic activity in the rat. J Auton Nerv Syst 19:31–37

    Google Scholar 

  • Swanson LW, Kuypers HGJM (1980) The paraventricular nucleus of the hypothalamus: cytoarchitectonic subdivisions and organisation of projections to the pituitory, dorsal vegal complex and spinal cord as demonstrated by retrograde double-labelled methods. J Comp Neurol 194:555–570

    Google Scholar 

  • Swanson LW, McKellar S (1979) The distribution of oxytocin and neurophysin stained fibres in the spinal cord of the rat and the monkey. J Comp Neurol 188:87–106

    Google Scholar 

  • Swanson LW, Sawchenko PE (1980) Paraventricular nucleus: a site for the integration of neuroendocrine and autonomic mechanisms. Endocrinology 31:410–417

    Google Scholar 

  • Szentagothai J (1948) Anatomical considerations of monosynaptic reflex arcs. J Neurophysiol 11:445–454

    Google Scholar 

  • Szentagothai J (1964) Neuronal and synaptic arrangements in the substantia gelatinosa Rolandi. J Comp Neurol 122:219–240

    Google Scholar 

  • Szentagothai J, Rethelyi M (1973) Cyto-and neuropil architecture of the spinal cord. In: Desmedt JE (ed) New developments in electromyography and clinical neurophysiology, vol 3. Karger, Basel, pp 20–27

    Google Scholar 

  • Szulczyk P, Trzebski A (1976) The local effects of pH changes in the cerebrospinal fluid on the ventrolateral areas of the medulla oblongata and the spinal cord surface on the activity of cardiac and vertebral sympathetic nerves. Acta Physiol Pol 27:9–17

    Google Scholar 

  • Szulczyk P, Trzebski A (1979) Effect of ischaemic decerebration on escape of sympathetic activity during carotid baroreceptor sympathetic reflex. Brain Res 168:404–407

    Google Scholar 

  • Szulczyk P, Wilk M (1985) Neural organisation of the viscero-cardiac reflexes. Brain Res 326:261–271

    Google Scholar 

  • Takahashi D (1913) Zur vergleichenden Anatomie des Seitenhorns im Rückenmark der Vertebralen. Arb Neurol Inst Wien Univ 20:62–83

    Google Scholar 

  • Takano Y, Loewy AD (1985) [3H]substance P binding in the intermediolateral cell column and striatum of the rat. Brain Res 311:144–147

    Google Scholar 

  • Takano Y, Martin JE, Leeman SE, Loewy AD (1984) Substance P immunoreactivity released from rat spinal cord after kainic acid excitation of the ventral medulla oblongata: a correlation with increases in blood pressure. Brain Res 291:168–172

    Google Scholar 

  • Takano Y, Sawyer WB, Loewy AD (1985) Substance P mechanisms of the spinal cord related to vasomotor tone in the spontaneously hypertensive rat. Brain Res 334:105–116

    Google Scholar 

  • Takano Y, Sawyer WB, Kamiya H, Loewy AD (1986) Substance P mechanisms of the spinal cord related to vasomotor tone in rats. In: Nakamura K (ed) Brain and blood pressure control. Elsevier, Amsterdam, pp 205–210

    Google Scholar 

  • Tan CK, Wong WC (1975) An ultrastructural study of the synaptic glomeruli in the intermediolateral neurones of the rat. Experientia 31:201–203

    Google Scholar 

  • Tappaz ML, Zivin JA, Kopin IJ (1976) Intraspinal glutamic decarboxylase distribution after transection of the cord at the thoracic level. Brain Res 111:220–223

    Google Scholar 

  • Tauber ES (1974) Physiology of sleep. Adv Sleep Res 1:133–172

    Google Scholar 

  • Taylor DG, Brody MJ (1976) Spinal adrenergic mechanisms regulating sympathetic outflow to blood vessels. Cir Res 38 [Suppl 11]:10

    Google Scholar 

  • Taylor DG, Gebber GL (1973) Sympathetic unit responses to stimulation of the cat medulla. Am J Physiol 225:1138–1146

    Google Scholar 

  • Taylor DG, Gebber GL (1975) Baroreceptor mechanisms controlling sympathetic neurone rhythms of central origin. Am J Physiol 228:1002–1013

    Google Scholar 

  • Terni T (1923) Ricerche anatomiche sul sistema autonomi degli uccelli. 1. Il sistema pregangliare spinale. Arch Ital Anat Embriol 24:407–531

    Google Scholar 

  • Terui N, Saeki Y, Kuwaki T, Kumada M (1986) Role of neurons of the ventrolateral medulla oblongata in the arterial baroreceptor reflex in rabbits. In: Nakamura K (ed) Brain and blood pressure control. Elsevier, Amsterdam, pp 49–54

    Google Scholar 

  • Torigoe Y, Cernucan RD, Nishimoto JAS, Blanks RHI (1985) Sympathetic preganglionic efferent and afferent neurones mediated by the greater splanchnic nerve in rabbit. Exp Neurol 87:334–348

    Google Scholar 

  • Trzebski A, Lipski J, Majcherczyk S, Szulczyk P, Chruscielewski L (1975) Central organisation and interaction of the carotid baroreceptor and chemoreceptor sympathetic reflex. Brain Res 87:227–237

    Google Scholar 

  • Tucker DC, Saper CB (1985) Specificity of spinal projections from hypothalamic and brainstem areas which innervate sympathetic preganglionic neurones. Brain Res 360:159–164

    Google Scholar 

  • Uchida Y, Kamisaka K, Ueda H (1971) Two types of renal mechanoreceptors. Jpn Heart J 12:233–241

    Google Scholar 

  • Ueda H, Uchida Y, Kamisaka K (1967) Mechanism of the reflex depressor effect by kidney in dog. Jpn Heart J 8:597–606

    Google Scholar 

  • Undesser EK, Shinnick-Gallagher O, Gallagher JP (1981) Spinal sympathetic reflex and random activity in the isolated amphibian spinal cord. Am J Physiol 240:R295–R300

    Google Scholar 

  • Unnerstall JR, Kopajtic TA, Kuhar MJ (1984) Distribution of α 2-agonist binding sites in the rat and human central nervous system: analysis of some functional anatomic correlates of the pharmacological effects of clonidine and related adrenergic agents. Brain Res Rev 7:69–101

    Google Scholar 

  • Van der Guyten J, Palkovits M, Wijnen HLJM, Versteeg DHG (1976) The regional distribution of adrenaline in the rat brain. Brain Res 107:171–175

    Google Scholar 

  • Wallis DI, North RA (1978) Synaptic input to cells of the rabbit superior cervical ganglion. Pflügers Arch 374:145–152

    Google Scholar 

  • Wang GH (1964) The neural control of sweating. University of Wisconsin Press, Madison

    Google Scholar 

  • Wang GH, Brown VW (1965a) Changes in galvanic skin reflex after acute spinal transection in normal and decerebrate cats. J Neurophysiol 19:446–451

    Google Scholar 

  • Wang GH, Brown VW (1965b) Supraspinal inhibition of an autonomic reflex. J Neurophysiol 19:564–572

    Google Scholar 

  • Wang GH, Stein P, Brown VW (1956) Effects of transections of central neuraxis on galvanic skin reflex in anaesthetised cats. J Neurophysiol 19:340–349

    Google Scholar 

  • Watkins JC, Evans RH (1981) Excitatory amino acid transmitters. Annu Rev Pharmacol Toxicol 21:165–204

    Google Scholar 

  • Wayner MJ, Ono T, Nolley D (1973) Effects of angiotensin II on central neurones. Pharmacol Biochem Behav 1:679–691

    Google Scholar 

  • Weaver LC (1977) Cardiopulmonary sympathetic afferent influences on renal nerve activity. Am J Physiol 233:H592–H599

    Google Scholar 

  • Weaver LC, Mecklem LJ, Reimann KA, Meckler RL, Oehl RS (1979) Organisation of thoracic sympathetic afferent influences on renal nerve activity. Am J Physiol 237:H44–H50

    Google Scholar 

  • Weaver LC, Fry HK, Meckler RL, Oehl RS (1983) Multisegmental spinal sympathetic reflexes originating from the heart. Am J Physiol 245:R345–R352

    Google Scholar 

  • Weidinger H, Huber U (1964) Beziehung zwischen sympathischen Aktionspotentialen, zentraler Atmung und Blutdruck bei chronisch decerebrierten Katzen. Pflügers Arch 281:259–270

    Google Scholar 

  • Weidinger H, Leschhorn V (1964) Sympathische Tonisierung und rhythmische Blutdruckschwankungen. Z Kreislaufforsch 53:985–1002

    Google Scholar 

  • Wessendorf MV, Anderson EG (1983) Single unit studies of identified bulbospinal serotonergic units. Brain Res 279:93–103

    Google Scholar 

  • Wessendorf MV, Proudfit HK, Anderson EG (1981) The identification of serotonergic neurones in the nucleus raphe magnus by conduction velocity. Brain Res 214:168–173

    Google Scholar 

  • Westlund KN, Bowker RM, Ziegler MG, Coulter JD (1982) Descending noradrenergic projections and their spinal terminations. In: Kuypers HGJM, Martin GF (eds) Descending pathways to the spinal cord. Prog Brain Res 57. Elsevier, Amsterdam, pp 219–238

    Google Scholar 

  • Westlund KN, Bowker RM, Ziegler MG, Coulter JD (1983) Noradrenergic projections to the spinal cord of the rat. Brain Res 203:15–32

    Google Scholar 

  • Whitwam JG, Kidd C, Fussey IV (1979) Responses in sympathetic nerves of the dog evoked by stimulation of somatic nerves. Brain Res 165:219–233

    Google Scholar 

  • Wilson VJ, Peterson BW (1981) Vestibulospinal and reticulospinal systems. In: Handbook of physiology, sect 1: The nervous system, vol 11. American Physiological Society, Bethesda, pp 667–702

    Google Scholar 

  • Wolstencroft JH (1964) Reticulospinal neurones. J Physiol (Lond) 174:91–108

    Google Scholar 

  • Wong RK, Prince DA (1978) Participation of calcium spikes during intrinsic burst firing in hippocampal neurones. Brain Res 159:385–390

    Google Scholar 

  • Wong WC, Tan CK (1974) Degeneration in the adult rat spinal cord following systemic treatment with 6-hydroxydopamine. Electron microscopy study. Experimentia 30:1455–1458

    Google Scholar 

  • Wong WC, Tan CK (1980) The fine structure of the intermediolateral nucleus of the spinal cord of the monkey (Macaca fascicularis). J Anat (Lond) 130:263–277

    Google Scholar 

  • Wood JD (1975) Neurophysiology of Auerbach's plexus and control of intestinal motility. Physiol Rev 55:307

    Google Scholar 

  • Wood JD, Mayer CJ (1979) Serotonergic activation of tonic type enteric neurones in guinea pig small intestine. J Neurophysiol 42:582–593

    Google Scholar 

  • Wurster RD (1977) Spinal sympathetic control of the heart. In: Randall EC (ed) Neural regulation of the heart. Oxford University Press, Oxford, pp 211–246

    Google Scholar 

  • Wyszogrodski I (1972) Central inhibition in the sympathetic nervous system. PhD thesis, McGill University, Canada

    Google Scholar 

  • Wyszogrodski I, Polosa C (1973) The inhibition of preganglionic neurones by somatic afferents. Can J Physiol Pharmacol 51:29–38

    Google Scholar 

  • Yaksh TL, Rudy TA (1976) Chronic catheterisation of the spinal sub-arachnoid space. Physiol Behav 17:1031–1037

    Google Scholar 

  • Yamada KA, Norman WP, Hamosh P, Gillis RA (1982) Medullary ventral surface GABA receptors affect respiratory and cardiovascular function. Brain Res 248:71–78

    Google Scholar 

  • Yamada KA, McAllen RM, Loewy AD (1984) GABA antagonists applied to the ventral surface of the medulla oblongata block the baroreceptor reflex. Brain Res 297:175–180

    Google Scholar 

  • Yamaji K, Fujita M, Otsuki Y, Tamiyawa O (1981) Development of radioimmunoassay for oxytocin in the spinal cord and brain of rats. Psychoneuroendocrinology 6:347–351

    Google Scholar 

  • Yamashita H, Inenaga K, Koizumi K (1984) Possible projections from regions of paraventricular and suparaspinal nuclei to the spinal cord: electrophysiological studies. Brain Res 296:373–378

    Google Scholar 

  • Yashpal K, Gauthier SG, Henry JL (1985) Substance P given intrathecally at the spinal T9 level increases adrenal output of adrenaline and noradrenaline in the rat. Neuroscience 15:529–536

    Google Scholar 

  • Yen CT, Blum PS, Spath JA (1983) Control of cardiovascular function by electrical stimulation within the medullary-raphe region of the cat. Exp Neurol 79:666–679

    Google Scholar 

  • Yoshimura M, Nishi S (1982) Intracellular recordings from lateral horn cells of the spinal cord in vitro. J Auton Nerv Syst 6:5–11

    Google Scholar 

  • Yoshimura M, Polosa C, Nishi S (1986a) Noradrenaline modifies sympathetic preganglionic neurone spike and after potential. Brain Res 362:370–374

    Google Scholar 

  • Yoshimura M, Polosa C, Nishi S (1986b) Electrophysiological properties of sympathetic preganglionic neurones in the cat spinal cord in vitro. Pflügers Arch 406:91–98

    Google Scholar 

  • Yoshimura M, Polosa C, Nishi S (1986c) After-hypopolarisation mechanisms in cat sympathetic preganglionic neurones in vitro. J Neurophysiol 55:1234–1246

    Google Scholar 

  • Yusof AMP (1986) Factors concerned in the regulation of sympathetic activity during paradoxical sleep. PhD thesis, University of Birmingham

    Google Scholar 

  • Yusof AMP, Coote JH (1986a) Excitatory and inhibitory action of 5-hydroxytryptamine (5-HT) on sympathetic neurones in rat spinal cord. Neurosci Lett [Suppl] 24:S38

    Google Scholar 

  • Yusof AMP, Coote JH (1986b) Is vasomotor tone dependent on a substance P sympatho-excitatory pathway in the spinal cord? Neurosci Lett [Suppl] 24:S15

    Google Scholar 

  • Yusof AMP, Coote JH (1987) The action of substance P antagonist on sympathetic nerve activity in the rat. Neurosci Lett 75:329–333

    Google Scholar 

  • Zhang T, Rohlicek CV, Polosa C (1982) Responses of sympathetic preganglionic neurones to systemic hypercapnia in the acute spinal cat. J Auton Nerv Syst 6:381–389

    Google Scholar 

  • Zieglgänsberger W, Tulloch IF (1979) Effects of substance P on neurones in the dorsal horn of the spinal cord of the cat. Brain Res 166:273–282

    Google Scholar 

  • Zivin JA, Reid JL, Saavedra JM, Kopin IJ (1975) Quantitative localisation of biogenic amines in the spinal cord. Brain Res 99:293–301

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag

About this chapter

Cite this chapter

Coote, J.H. (1988). The organisation of cardiovascular neurons in the spinal cord. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 110. Reviews of Physiology, Biochemistry and Pharmacology, vol 110. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0027531

Download citation

  • DOI: https://doi.org/10.1007/BFb0027531

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-18736-3

  • Online ISBN: 978-3-540-48131-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics