Advertisement

Robust stability and stabilization of time-delay systems via integral quadratic constraint approach

  • M. Fu
  • H. Li
  • S. -I. Niculescu
Chapter
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 228)

Abstract

In this chapter, we consider two problems associated with time-delay systems: robust stability analysis and robust stabilization. We first obtain two results for robust stability using the integral quadratic constraint approach and the linear matrix inequality technique. Both results give an estimate of the maximum time-delay which preserves robust stability. The first stability result is simpler to apply while the second one gives a less conservative robust stability condition. We then apply these stability results to solve the associated robust stabilization problem using static state feedback. Our results provide new design procedures involving linear matrix inequalities.

Keywords

State Feedback Linear Matrix Inequality Robust Stability State Feedback Controller Positive Definite Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. D. O. Anderson, “A system theory criterion for positive real matrices,” SIAM J. Contr. Optimization, vol. 6, no. 2, pp. 171–192, 1967.Google Scholar
  2. 2.
    S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, Philadelphia: SIAM, 1994.Google Scholar
  3. 3.
    S. Dasgupta, G. Chockalingam, B. D. O. Anderson and M. Fu, “Lyapunov functions for uncertain systems with applications to the stability to time varying systems,” IEEE Trans. Circ. Syst., vol. 41, pp. 93–106, 1994.Google Scholar
  4. 4.
    M. Fu and S. Dasgupta: “The integral quadratic constraint approach to robustness analysis: An overview,” IFAC Workshop on Robust Control, Napa Valley, San Fransisco, 1996.Google Scholar
  5. 5.
    M. Fu and S. Dasgupta, “Parametric Lyapunov functions for uncertain systems: the multiplier approach,” presented at MNTS, St. Louis, June, 1996.Google Scholar
  6. 6.
    P. Gahinet, “Explicit controller formulas for LMI-based H synthesis,” Automatica, vol 32, pp. 1007–1014, 1996.Google Scholar
  7. 7.
    P. Gahinet and P. Apkarian, “A linear matrix inequality approach to \(\mathcal{H}_\infty\) control,” Int. J. Robust and Nonlinear Contr., vol. 4, pp. 421–428, 1994.Google Scholar
  8. 8.
    P. Gahinet, P. Apkarian and M. Chilali, “Affine parameter-dependent Lyapunov functions for real parameter uncertainty,” Proc. 33rd IEEE Conf. Decision and Control, pp. 2026–2031, Lake Buena Vista, FL, Dec., 1994.Google Scholar
  9. 9.
    T. Iwasaki, S. Hara and T. Asai, “Well-posedness theorem: a classification of LMI/BMI-reducible robust control problems,” Int. Symp. Intelligent Robotics Systems, Bangalore, India, Nov. 1995.Google Scholar
  10. 10.
    T. Iwasaki and R. E. Skelton, “A complete solution to the general \(\mathcal{H}_\infty\) problem: LMI existence conditions and state space formulas,” Proc. American Control Conf., pp. 605–609, San Fransisco, CA, June 2–4, 1993.Google Scholar
  11. 11.
    J. H. Ly, M. G. Safonov and F. Ahmad, “Positive real Parrot theorem with applications to LMI controller synthesis,” Proc. American Control Conf., pp. 50–52, Baltimore, MD, June 1994.Google Scholar
  12. 12.
    S.-I. Niculescu, On the stability and stabilization of linear systems with delayed state (in French), Ph.D. thesis, Laboratoire d'Automatique de Grenoble, INPG, February 1996.Google Scholar
  13. 13.
    S.-I. Niculescu, J.-M. Dion, and L. Dugard: “Delays-dependent stability for linear systems with two delays: a convex optimization approach,” Internal Report, Laboratoire d'Automatique de Grenoble, 1995.Google Scholar
  14. 14.
    A. Packard, K. Zhou, P. Pandey and G. Becker, “A collection of robust control problems leading to LMI's,” Proc. 30th IEEE Conf. Decision and Control, pp. 1245–1250, 1991.Google Scholar
  15. 15.
    A. Rantzer and A. Megretski, “System analysis via integral quadratic constraints,” Proc. 33rd IEEE Conf. Decision and Control, pp. 3062–3067, Lake Buena Vista, FL, Dec., 1994.Google Scholar
  16. 16.
    M. G. Safonov, Stability and Robustness of Multivariable Feedback Systems, MIT Press, 1980.Google Scholar
  17. 17.
    J. Willems, The Analysis of Feedback Systems, MIT Press, 1971.Google Scholar
  18. 18.
    V. A. Yakubovich, “Frequency conditions of absolute stability of control systems with many nonlinearities,” Automatica i Telemekhanica, vol. 28, pp. 5–30, 1967.Google Scholar
  19. 19.
    V. A. Yakubovich, “S-procedure in nonlinear control theory,” Vestnik Leningrad Universiteta, Ser. Matematika, pp. 62–77, 1971.Google Scholar

Copyright information

© Springer-Verlag London Limited 1998

Authors and Affiliations

  • M. Fu
    • 1
  • H. Li
    • 2
  • S. -I. Niculescu
    • 3
  1. 1.Dept. Electrical & Computer EngineeringThe University of NewcastleAustralia
  2. 2.Laboratoire d'Automatique de GrenobleENSIEGSaint Martin d'HèresFrance
  3. 3.Laboratoire de Mathématiques AppliquéesEcole Nationale Supérieure de Techniques AvancéesParisFrance

Personalised recommendations