Advertisement

Convex directions for stable polynomials and quasipolynomials: A survey of recent results

  • L. Atanassova
  • D. Hinrichsen
  • V. L. Kharitonov
Chapter
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 228)

Abstract

The purpose of this chapter is to give a survey of recent results on convex directions for the sets of stable polynomials and quasipolynomials. It presents a number of analytic criteria ensuring Hurwitz and Schur stability of segments of polynomials. Convex directions are characterized in terms of root loci and it is shown that these root loci behave differently in the real and the complex case. The convex direction problem for sets of stable quasipolynomials is also discussed. Applying similar methods as in the polynomial case analytic stability criteria are obtained for segments of quasipolynomials of delay and of neutral type.

Keywords

Simple Root Imaginary Axis Robust Stability Neutral Type Stable Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Atanassova, D. Hinrichsen and V.L. Kharitonov. On convex stability directions for real quasipolynomials. International Series of Numerical Mathematics., Birkhäuser Verlag, Basel, 121: 43–52, 1996.Google Scholar
  2. 2.
    L. Atanassova, D. Hinrichsen and V.L. Kharitonov. Convex directions for complex Hurwitz stable polynomials and quasipolynomials. Proc. of ECC, Brussels, Belgium, 1997.Google Scholar
  3. 3.
    B.R. Barmish. New Tools for Robustness of Linear Systems. Macmillan Publishing Company, New York, 1994.Google Scholar
  4. 4.
    S. Basu, Boundary implications of stability and positivity properties of multidimensional systems. Proc. IEEE, 78: 614–636, 4, 1990.Google Scholar
  5. 5.
    S.P. Bhattacharyya, H. Chapellat, L.H. Keel, Robust Control — The Parametric Approach. Prentice Hall, Upper Saddle River, 1995.Google Scholar
  6. 6.
    N.K. Bose, Applied Multidimensional Systems Theory. Van Nostrand Reinhold, New York, 1982.Google Scholar
  7. 7.
    N.K. Bose, Robust multivariable scattering Hurwitz interval polynomials. Linear Algebra and Its Applications, 98: 123–136, 1988.Google Scholar
  8. 8.
    N.K. Bose. Argument conditions for Hurwitz and Schur polynomials from network theory. IEEE Trans. Autom. Contr. AC-39: 345–346, 1994.Google Scholar
  9. 9.
    N.K. Bose. Edge property from end points for scattering Hurwitz polynomials. Automatica 32: 655–657, 1996.Google Scholar
  10. 10.
    A.C. Bartlett, C.V. Hollot and H. Lin. Root location of an entire polytope of polynomials: it suffices to check the edges. Math. Control, Signals and Systems, 61–71, 1988.Google Scholar
  11. 11.
    R. Bellman and K.L. Cook. Differential-Difference Equations. Academic Press, New York, 1963.Google Scholar
  12. 12.
    M. Fu, A.W. Olbrot, and M.P. Polis. Edge theorem and graphical test for robust stability of neutral time-delay systems. Automatica. 17: 739–742, 1991.Google Scholar
  13. 13.
    Minyue Fu. A class of weak Kharitonov regions for robust stability of linear uncertain systems. IEEE Trans. Autom. Contr. AC-36:975–978, 1991.Google Scholar
  14. 14.
    Minyue Fu. Test of convex directions for robust stability. Proc. 32-nd CDC, San Antonio, Texas. 502–507, 1993.Google Scholar
  15. 15.
    J.K. Hale. Theory of Functional Differential Equations. Applied Mathematical Sciences, vol. 3, Springer Verlag, New York, 1977.Google Scholar
  16. 16.
    D. Hinrichsen and V.L. Kharitonov. On convex directions for stable polynomials. Technical Report 309, Inst. f. Dynamische Systeme, Universität Bremen, Bremen, 1994. To appear in: Automatika i Telemekhanika.Google Scholar
  17. 17.
    T. Kato. Perturbation Theory for Linear Operators. Springer Verlag, Berlin, 1980.Google Scholar
  18. 18.
    V. L. Kharitonov and A.P. Zhabko. Robust Stability of Time-Delay Systems. IEEE Transactions on Automatic Control, AC-39:2388–2397, 1994.Google Scholar
  19. 19.
    I.R. Petersen. A class of stability regions for which a Kharitonov like theorem holds. IEEE Trans. Autom. Contr. AC-34:1111–1115, 1989.Google Scholar
  20. 20.
    A. Rantzer. Stability conditions for polytopes of polynomials. IEEE Transactions on Automatic Control, AC-37:79–89, 1992.Google Scholar
  21. 21.
    E. Schwengeler. Geometrisches über die Verteilung der Nullstellen spezieller ganzer Functionen (Exponentialsummen). Ph.D. thesis, Zürich, 1925.Google Scholar
  22. 22.
    N.G. Tchebotareff and N.N. Meiman. The Routh-Hurwitz Problem for Polynomials and Entire Functions. Proc. of Mathematical Institute, Acad. Sci. USSR, 1949 (in Russian).Google Scholar

Copyright information

© Springer-Verlag London Limited 1998

Authors and Affiliations

  • L. Atanassova
    • 1
  • D. Hinrichsen
    • 1
  • V. L. Kharitonov
    • 2
  1. 1.Institut für Dynamische SystemeUniversität BremenBremenGermany
  2. 2.Control AutomaticoCINVESTAV-IPNMexico D.FMexico

Personalised recommendations