Ordered tableaux: Extensions and applications

  • Reiner Hähnle
  • Christian Pape
Contributed Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1227)


In this paper several conceptual extensions to the theory of order-restricted free variable clausal tableaux which was initiated in [9, 8] are presented: atom orderings are replaced by the more general concept of a selection function, the substitutivity condition required for lifting is for certain variants of the calculus replaced by a much weaker assumption, and a first version of order-restricted tableaux with theories is introduced. The resulting calculi are shown to be sound and complete. We report on first experiments made with a prototypical implementation and indicate for which classes of problems order-restricted tableaux calculi are likely to be beneficial.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Bachmair and H. Ganzinger. Rewrite-based equational theorem proving with selection and simplification. J. of Logic and Computation, 4(3):217–247, 1994.Google Scholar
  2. 2.
    P. Baumgartner. A Model Elimination Calculus with Built-in Theories. In H.-J. Ohlbach, editor, Proceedings of the 16-th German AI-Conference (GWAI-92), pages 30–42. Springer-Verlag, 1992. LNAI 671.Google Scholar
  3. 3.
    P. Baumgartner and U. Furbach. Model Elimination without Contrapositives and its Application to PTTP. J. of Automated Reasoning, 13:339–359, 1994.Google Scholar
  4. 4.
    B. Beckert. Equality and other theory inferences. In M. D'Agostino, D. Gabbay, R. Hähnle, and J. Posegga, editors, Handbook of Tableau Methods. Kluwer, Dordrecht, to appear, 1997.Google Scholar
  5. 5.
    B. Beckert, R. Hähnle, P. Oel, and M. Sulzmann. The tableau-based theorem prover 3TAP, version 4.0. In Proceedings, 13th International Conf. on Automated Deduction (CADE), New Brunswick, NJ, USA, LNCS 1104, pages 303–307. Springer, 1996.Google Scholar
  6. 6.
    C. Fermüller, A. Leitsch, T. Tammet, and N. Zamov. Resolution Methods for the Decision Problem. LNAI 679. Springer-Verlag, 1993.Google Scholar
  7. 7.
    M. C. Fitting. First-Order Logic and Automated Theorem Proving. Springer-Verlag, New York, second edition, 1996.Google Scholar
  8. 8.
    R. Hähnle and S. Klingenbeck. A-ordered tableaux. J. of Logic and Computation, 6(6):819–834, 1996.Google Scholar
  9. 9.
    S. Klingenbeck and R. Hähnle. Semantic tableaux with ordering restrictions. In A. Bundy, editor, Proc. 12th Conf. on Automated Deduction CADE, Nancy, volume 814 of LNCS, pages 708–722. Springer-Verlag, 1994.Google Scholar
  10. 10.
    R. Letz, J. Schumann, S. Bayerl, and W. Bibel. SETHEO: A high-perfomance theorem prover. J. of Automated Reasoning, 8(2):183–212, 1992.Google Scholar
  11. 11.
    D. Loveland. Mechanical theorem proving by model elimination. Journal of the ACM, 15(2), 1968.Google Scholar
  12. 12.
    W. W. McCune. OTTER 3.0 Reference Manual and Guide. Argonne National Laboratory/IL, USA, 1994.Google Scholar
  13. 13.
    R. Nieuwenhuis. Simple LPO constraint solving methods. Information Processing Letters, 47:65–69, 1993.Google Scholar
  14. 14.
    F. Oppacher and E. Suen. HARP: A tableau-based theorem prover. J. of Automated Reasoning, 4:69–100, 1988.Google Scholar
  15. 15.
    C. Pape. Vergleich und Analyse von Ordnungseinschränkungen für freie Variablen Tableau. Diplomarbeit, Fakultät für Informatik, Universität Karlsruhe, May 1996. In German. Available via anonymous ftp to ftp.ira.uka.de under pub/uni-karlsruhe/papers/techreports/1996/1996-30.ps.gz.Google Scholar
  16. 16.
    U. Petermann. How to build in an open theory into connection calculi. Journal on Computers and Artificial Intelligence, 2:105–142, 1992.Google Scholar
  17. 17.
    R. M. Smullyan. First-Order Logic. Dover Publications, New York, second corrected edition, 1995. First published 1968 by Springer-Verlag.Google Scholar
  18. 18.
    M. Sulzmann. Ausnutzung von KIV-Spezifikationen in 3T A P. Studienarbeit, Fakultät für Informatik, Universität Karlsruhe, July 1995.Google Scholar
  19. 19.
    G. Sutcliffe, C. Suttner, and T. Yemenis. The TPTP problem library. In A. Bundy, editor, Proc. 12th Conf. on Automated Deduction CADE, Nancy, LNAI, pages 252–266. Springer, 1994.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Reiner Hähnle
    • 1
  • Christian Pape
    • 1
  1. 1.Institut für Logik, Komplexität und DeduktionssystemeUniversität KarlsruheKarlsruheGermany

Personalised recommendations