Non-elementary speed-ups in proof length by different variants of classical analytic calculi

  • Uwe Egly
Contributed Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1227)


In this paper, different variants of classical analytic calculi for first-order logic are compared with respect to the length of proofs possible in such calculi. A cut-free sequent calculus is used as a prototype for different other analytic calculi like analytic tableau or various connection calculi. With modified branching rules (β-rules), non-elementary shorter minimal proofs can be obtained for a class of formulae. Moreover, by a simple translation technique and a standard sequent calculus, analytic cuts, i.e., cuts where the cut formulae occur as subformulae in the input formula, can be polynomially simulated.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Baaz, U. Egly, and C. G. Fermüller. Lean Induction Principles for Tableaux. In Proceedings of the International Conference on Theorem Proving with Analytic Tableaux and Related Methods. Springer Verlag, 1997.Google Scholar
  2. 2.
    M. Baaz and C. G. Fermüler. Non-elementary Speedups between Different Versions of Tableaux. In P. Baumgartner, R. Hähnle, and J. Posegga, editors, Proceedings of the Fourth Workshop on Theorem Proving with Analytic Tableaux and Related Methods, pages 217–230. Springer Verlag, 1995.Google Scholar
  3. 3.
    M. Baaz and A. Leitsch. On Skolemization and Proof Complexity. Fundamenta Informaticae, 20:353–379, 1994.Google Scholar
  4. 4.
    E. W. Beth. Semantic Entailment and Formal Derivability. Mededlingen der Koninklijke Nederlandse Akademie van Wetenschappen, 18(13), 1955.Google Scholar
  5. 5.
    W. Bibel. Automated Theorem Proving. Vieweg, Braunschweig, second edition, 1987.Google Scholar
  6. 6.
    W. Bibel. Deduction: Automated Logic. Academic Press, London, 1993.Google Scholar
  7. 7.
    W. Bibel and E. Eder. Methods and Calculi for Deduction. In D. M. Gabbay, C. J. Hogger, and J. A. Robinson, editors, Handbook of Logic in Artificial Intelligence and Logic Programming, volume 1, chapter 3, pages 67–182. Oxford University Press, Oxford, 1993.Google Scholar
  8. 8.
    G. Boolos. Don't Eliminate Cut. J. Philosophical Logic, 13:373–378, 1984.Google Scholar
  9. 9.
    G. Boolos. A Curious Inference. J. Philosophical Logic, 16:1–12, 1987.Google Scholar
  10. 10.
    S. Cook and R. Reckhow. On the Lenghts of Proofs in the Propositional Calculus. In Proceedings of the 5th Annual ACM Symposium on Theory of Computing, pages 135–148. University of Toronto, 1974.Google Scholar
  11. 11.
    M. D'Agostino. Are Tableaux an Improvement on Truth-Tables? Cut-Free Proofs and Bivalence. J. Logic, Language and Information, 1:235–252, 1992.Google Scholar
  12. 12.
    E. Eder. Relative Complexities of First Order Calculi. Vieweg, Braunschweig, 1992.Google Scholar
  13. 13.
    U. Egly. An Answer to an Open Problem of Urquhart, 1996. Submitted.Google Scholar
  14. 14.
    U. Egly. On Different Structure-preserving Translations to Normal Form. J. Symbolic Computation, 22:121–142, 1996.Google Scholar
  15. 15.
    M. Fitting. First-Order Logic and Automated Theorem Proving. Springer Verlag, second edition, 1996.Google Scholar
  16. 16.
    G. Gentzen. Untersuchungen über das logische Schließen. Mathematische Zeitschrift, 39:176–210, 405–431, 1935. English translation in [24].Google Scholar
  17. 17.
    R. Letz, K. Mayr, and C. Goller. Controlled Integration of the Cut Rule into Connection Tableau Calculi. J. Automated Reasoning, 13:297–337, 1994.Google Scholar
  18. 18.
    V. P. Orevkov. Lower Bounds for Increasing Complexity of Derivations after Cut Elimination. Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im V. A. Steklova AN SSSR, 88:137–161, 1979. English translation in J. Soviet Mathematics, 2337–2350, 1982.Google Scholar
  19. 19.
    D. A. Plaisted and S. Greenbaum. A Structure-Preserving Clause Form Translation. J. Symbolic Computation, 2:293–304, 1986.Google Scholar
  20. 20.
    J. Posegga and P. H. Schmitt. Automated Deduction with Shannon Graphs. J. Logic and Computation, 5(6):697–729, 1995.Google Scholar
  21. 21.
    D. Prawitz. A Proof Procedure with Matrix Reduction. In M. Laudet, D. Lacombe, L. Nolin, and M. Schützenberger, editors, Symposium on Automatic Demonstration, volume 125 of Lecture Notes in Mathematics, pages 207–214. Springer Verlag, 1970.Google Scholar
  22. 22.
    K. Schütte. Proof Theory. Springer Verlag, 1977.Google Scholar
  23. 23.
    R. Smullyan. First-Order Logic. Springer Verlag, 1968.Google Scholar
  24. 24.
    M. E. Szabo, editor. The Collected Papers of Gerhard Gentzen. Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Company, 1969.Google Scholar
  25. 25.
    G. Takeuti. Proof Theory, volume 81 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Company, 1975.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Uwe Egly
    • 1
  1. 1.Institut für Informationssysteme E184.3Technische Universität WienWienAustria

Personalised recommendations