Advertisement

Tableaux for logic programming with strong negation

  • Seiki Akama
Contributed Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1227)

Abstract

Logic programming with strong negation (LPS) was proposed by Pearce and Wagner (1991) to handle both explicit and implicit negative information in knowledge representation in AI. We describe tableau calculi for LPS and establish the completeness. The proposed tableau calculi can deal with a wider class of programs in LPS. We also discuss possible refinements of the tableau calculi to improve efficiency.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akama, S. (1987): Resolution in constructivism, Logique et Analyse 120, 385–399.Google Scholar
  2. Akama, S. (1988a): On the proof method for constructive falsity, Zeitschrift für mathematische Logik und Grundlagen der Mathematik 34, 385–392.Google Scholar
  3. Akama, S. (1988b): Constructive predicate logic with strong negation and model theory, Notre Dame Journal of Formal Logic 29, 18–27.Google Scholar
  4. Akama, S. (1989): Constructive Falsity: Foundations and Their Applications to Computer Science, Ph.D. dissertation, Department of Administration Engineering, Keio University, Yokohama, Japan.Google Scholar
  5. Akama, S. (1990): Subformula semantics for strong negation systems, The Journal of Philosophical Logic 19, 217–226.Google Scholar
  6. Akama, S. (1995): Three-valued constructive logic and logic programs, Proc. of the IEEE 25th International Symposium on Multiple-Valued Logic, 276–281, Bloomington, USA, May.Google Scholar
  7. Akama, S. (1996): Curry's paradox in contractionless constructive logic, The Journal of Philosophical Logic 25, 135–150.Google Scholar
  8. Alferes, J. J. and Pereira, L. M. (1996): Reasoning with Logic Programming, LNAI 1111, Springer, Berlin.Google Scholar
  9. Almukdad, A. and Nelson, D. (1984): Constructible falsity and inexact predicates, The Journal of Symbolic Logic 49, 8–37, 231–233.Google Scholar
  10. Clark, K. L. (1978): Negation as failure, H. Gallaire and J. Minker (eds.), Logic and Databases, 293–322, Plenum Press, New York.Google Scholar
  11. Fitting, M. (1969): Intuitionistic Logic, Model Theory and Forcing, North-Holland, Amsterdam.Google Scholar
  12. Gelfond, M. and Lifschitz, V. (1990): Logic programs with classical negation, D. H. D. Warren and P. Szeredi (eds.), Proc. of ICLP'90, 579–597, MIT Press, Cambridge, Mass.Google Scholar
  13. Hähnle, R. (1993): Automated Deduction in Multiple-Valued Logics, Oxford University Press, Oxford.Google Scholar
  14. Kowalski, R. and Sadri, F. (1990): Logic programs with exceptions, D. H. D. Warren and P. Szeredi (eds.), Proc. of ICLP'90, 598–613, MIT Press, Cambridge, Mass.Google Scholar
  15. Miglioli, P., Moscato, U. and Ornaghi, M. (1994): An improved refutation system for intuitionistic predicate logic, Journal of Automated Reasoning 13, 361–373.Google Scholar
  16. Nelson, D. (1949): Constructible falsity, The Journal of Symbolic Logic 14, 16–26.Google Scholar
  17. Pearce, D. (1992): Default logic and constructive logic, Proc. of ECAI'92, 309–313.Google Scholar
  18. Pearce, D. (1993): Answer sets and constructive logic Part II: Extended logic programs and related nonmonotonic formalisms, L. M. Pereira and A. Nerode (eds.), Logic Programming and Non-Monotonic Reasoning, Proc. of the 2nd International Workshop, 457–475, MIT Press, Cambridge, Mass.Google Scholar
  19. Pearce, D. and Wagner, G. (1990): Reasoning with negative information I: Strong negation in logic programs, Acta Philosophica Fennica 49, 430–453.Google Scholar
  20. Pearce, D. and Wagner, G. (1991): Logic programming with strong negation, P. Schroeder-Heister (ed.), Extensions in Logic Programming, 311–326, Springer, Berlin.Google Scholar
  21. Rautenberg, W. (1979): Klassische and Nichtklassische Aussagenlogik, Vieweg, Wiesbaden.Google Scholar
  22. Schöenfeld, W. (1985): PROLOG extensions based on tableau calculus, Proc. of IJCAI'85, 730–732.Google Scholar
  23. Smullyan, R. (1968): First-Order Logic, Springer, Berlin.Google Scholar
  24. Thomason, R. H. (1969): A semantical study of constructible falsity, Zeitschrift für mathematische Logik und Grundlagen der Mathematik 15, 247–257.Google Scholar
  25. Wagner, G. (1991): Logic programming with strong negation and inexact predicates, Journal of Logic and Computation 1, 835–859.Google Scholar
  26. Wagner, G. (1992): Vivid Logic: Knoweldge-Based Reasoning with Two Kinds of Negation, Ph.D. dissertation, Freien Universität Berlin.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Seiki Akama
    • 1
  1. 1.Computational Logic Laboratory, Department of Information SystemsTeikyo Heisei UniversityChibaJapan

Personalised recommendations