Advertisement

Distances and limits on Herbrand interpretations

  • Shan-Hwei Nienhuys-Cheng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1446)

Abstract

A notion of distances between Herbrand interpretations enables us to measure how good a certain program, learned from examples, approximates some target program. The distance introduced in [10] has the disadvantage that it does not fit the notion of “identification in the limit”. We use a distance defined by a level mapping [5] to overcome this problem, and study in particular the mapping TII induced by a definite program 11 on the metric space. Continuity of TII holds under certain conditions, and we give a concrete level mapping that satisfies these conditions, based on [10]. This allows us to prove the existence of fixed points without using the Banach Fixed Point Theorem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. W. de Bakker, E. de Vink, Control Flow Semantics. MIT press, 1996.Google Scholar
  2. 2.
    M. Bezem Characterizing Termination of Logic Programs with Level Mappings p.69–80, Proceedings of the North American Conference on Logic Programming. MIT press, Cambridge, MA, 1989.Google Scholar
  3. 3.
    J. Dieudonné. Foundations of Modern Analysis. Academic Press, 1969.Google Scholar
  4. 4.
    B.A. Davey and H.A. Priestley. Introduction to Lattices and Order. Cambridge University Press, 1990.Google Scholar
  5. 5.
    M. Fitting. Metric methods, three examples and a theorem. Journal of Logic Programming, 1994;21:p.113–127.Google Scholar
  6. 6.
    A. Hutchinson. Metrics on Terms and Clauses. In: M. Someren, G. Widmer, editors. Proceedings of the 9th European Conference on Machine Learning (ECML-97), p.138–145, Springer-Verlag, 1997.Google Scholar
  7. 7.
    J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, second edition, 1987.Google Scholar
  8. 8.
    S. H. Nienhuys-Cheng and A. de Bruin. Kahn's fixed-point characterization for linear dynamic networks. In: Proceedings of SofSem97. Lecture Notes in Computer Science, Springer-Verlag, 1997.Google Scholar
  9. 9.
    S. H. Nienhuys-Cheng and R. de Wolf. Foundations of Inductive Logic Programming, LNAI Tutorial 1228, Springer-Verlag, 1997.Google Scholar
  10. 10.
    S. H. Nienhuys-Cheng. Distance between Herbrand interpretations: A measure for approximations to a target concept, In: Proccedings of ILP97, Lavrač and Džeroski (eds), Springer-Verlag, 1997.Google Scholar
  11. 11.
    E. Y. Shapiro. Inductive inference of theories from facts. Research Report 192, Yale University, 1981.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Shan-Hwei Nienhuys-Cheng
    • 1
    • 2
  1. 1.Department of Computer ScienceKatholieke Universiteit LeuvenLeuven
  2. 2.Erasmus Unniversiteit RotterdamRotterdam

Personalised recommendations