Inducing shogi heuristics using inductive logic programming

  • Tomofumi Nakano
  • Nobuhiro Inuzuka
  • Hirohisa Seki
  • Hidenori Itoh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1446)


This paper reports the results of an inductive logic programming (ILP) application to solve shogi or Japanese chess mating problems, which are puzzles using shogi rules. The problems can be solved by heuristic search of AND-OR trees. We propose a method of using the ILP technique to generate heuristic functions, which are automatically tuned according to the confidence of the knowledge induced by ILP. Experiments show that the method prunes search space compared with a naive search.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. S. Flann and T. G. Dietterich: “Study of Explanation-Based Methods for Inductive Learning”, Machine Learning, Vol.4, pp.187–226 (1989).Google Scholar
  2. 2.
    T. E. Fawcett and P. E. Utogoff: “Automatic Feature Generation for Problem Solving Systems”, Proc. 9th Int'l Conf. on Machine Learning, Morgan Kaufmann pp.144–153 (1992).Google Scholar
  3. 3.
    S. Muggleton: “Inductive Acquisition of Chess Strategies”, Machine Intelligence 11, Clarendon Press, pp. 375–387 (1988).Google Scholar
  4. 4.
    M. Bain and A. Srinivasan. “Inductive Logic Programming With Large-Scale Unstructured Data”, Machine Intelligence 14, Clarendon Press Oxford (OUP), pp.235–274 (1995).Google Scholar
  5. 5.
    T. M. Mitchell, P. E. Utogoff and R. Banerji: “Learning by Experimentation: Acquiring and refining problem-solving heuristics”, In R. S. Michalski ed., Machine learning: an artificial intelligence approach, Tioga Publishing (1983).Google Scholar
  6. 6.
    T. M. Mitchell, R. M. Keller and S. T. Kedar-Cabelli: “Explanation-Based Generalization: A Unifying View”, Machine Learning, 1, pp. 47–80 (1986).Google Scholar
  7. 7.
    J. M. Zelle and R. J. Mooney: “Combining FOIL and EBG to speed-up Logic Programs”, Proc. 13th Int'l Joint Conf. on AI (IJCAI-93), pp. 1106–1111, (1993).Google Scholar
  8. 8.
    T. A. Estlin and R. J. Mooney: "Multi-Strategy Learning of Search Control for Partial-Order Planning”, Proc. 13th National Conf. on AI, pp. 843-848 (1996).Google Scholar
  9. 9.
    N. Inuzuka, H. Seki and H. Itoh: “An intelligent search method using Inductive Logic Programming”, Proc. IJCAI97 Workshop Frontiers of Inductive Logic Programming, pp.115–120 (1997).Google Scholar
  10. 10.
    SHOGI-RULES, URL: jp/SHOGI/rules/erules.html.Google Scholar
  11. 11.
    N. Inuzuka, M. Kamo, N. Ishii, H. Seki and H. Itoh: “Top-down induction of logic programs from incomplete samples”, Proc. 6th Int'l Inductive Logic Programming Workshop (LNAI 1314, Springer-Verlag), pp.265–282 (1996).Google Scholar
  12. 12.
    N. Inuzuka, H. Seki and H. Itoh: “Efficient induction of executable logic programs from examples”, Proc. Asian Computing Science Conference (LNCS 1345, Springer-Verlag), pp.212–224 (1997).Google Scholar
  13. 13.
    J. R. Quinlan: “Learning logical definitions from relations”, Machine Learning, 5, pp.239–266 (1990).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Tomofumi Nakano
    • 1
  • Nobuhiro Inuzuka
    • 1
  • Hirohisa Seki
    • 1
  • Hidenori Itoh
    • 1
  1. 1.Nagoya Institute of TechnologyNagoyaJapan

Personalised recommendations