A 2-categorical presentation of term graph rewriting

  • A. Corradini
  • F. Gadducci
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1290)


It is well-known that a term rewriting system can be faithfully described by a cartesian 2-category, where horizontal arrows represent terms, and cells represent rewriting sequences. In this paper we propose a similar, original 2-categorical presentation for term graph rewriting. Building on a result presented in [8], which shows that term graphs over a given signature are in one-to-one correspondence with arrows of a gs-monoidal category freely generated from the signature, we associate with a term graph rewriting system a gs-monoidal 2-category, and show that cells faithfully represent its rewriting sequences. We exploit the categorical framework to relate term graph rewriting and term rewriting, since gs-monoidal (2-)categories can be regarded as “weak” cartesian (2-) categories, where certain (2-)naturality axioms have been dropped.


term graph rewriting directed acyclic graphs categorical models 2-categories 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Z.M. Ariola and J.W. Klop. Equational Term Graph Rewriting. Fundamenta Informaticae, 26:207–240,1996.MATHMathSciNetGoogle Scholar
  2. 2.
    H.P. Barendregt, M.C.J.D. van Eekelen, J.R.W. Glauert, J.R. Kennaway, M.J. Plasmeijer, and M.R. Sleep. Term graph reduction. In Proceedings PARLE, volume 259 of LNCS, pages 141–158. Springer Verlag, 1987.Google Scholar
  3. 3.
    M. Barr and C. Wells. Category Theory for Computing Science. Prentice Hall, 1990.Google Scholar
  4. 4.
    S. Bloom and Z. Èsik. Iteration Theories. EATCS Monographs on Theoretical Computer Science. Springer Verlag, 1991.Google Scholar
  5. 5.
    G. Boudol. Computational semantics of term rewriting systems. In M. Nivat and J. Reynolds, editors, Algebraic Methods in Semantics, pages 170–235. Cambridge University Press, 1985.Google Scholar
  6. 6.
    L. Budach and H.-J. Hoenke. Automaten and Functoren. Akademie-Verlag, 1975.Google Scholar
  7. 7.
    A. Corradini. Concurrent Graph and Term Graph Rewriting. In U. Montanari and V. Sassone, editors, Proceedings CONCUR'96, volume 1119 of LNCS, pages 438–464. Springer Verlag, 1996.Google Scholar
  8. 8.
    A. Corradini and F. Gadducci.An algebraic presentation of term graphs, via ps-monoidal categories.Submitted for publication. Available at, 1997.Google Scholar
  9. 9.
    A. Corradini, F. Gadducci, and U. Montanari. Relating two categorical models of term rewriting. In Rewriting Tecniques and Applications, volume 914 of LNCS, pages 225–240. Springer Verlag, 1995.Google Scholar
  10. 10.
    A. Corradini and F. Rossi. Hyperedge Replacement Jungle Rewriting for Term Rewriting Systems and Logic Programming. Theoret. Comput. Sci., 109:7–48, 1993.MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    G. Gadducci. On the Algebraic Approach to Concurrent Term Rewriting. PhD thesis, University of Pisa — Department of Computer Science, 1996.Google Scholar
  12. 12.
    J.A. Goguen, J.W. Tatcher, E.G. Wagner, and J.R Wright. Some Fundamentals of Order-Algebraic Semantics. In Mathematical Foundations of Computer Science, volume 45 of LNCS, pages 153–168. Springer Verlag, 1976.Google Scholar
  13. 13.
    B. Hofmann and D. Plump. Implementing Term Rewriting by Jungle Evaluation. Informatique thèorique et Applications/Theoretical Informatics and Applications, 25:445–472, 1991.Google Scholar
  14. 14.
    G. Huet and J-J. Lévy. Computations in Orthogonal Rewriting Systems, I. In J.-L. Lassez and G. Plotkin, editors, Computational Logic: Essays in honour of J. A. Robinson, pages 395–414. MIT Press, 1991.Google Scholar
  15. 15.
    B. Jacobs. Semantics of Weakening and Contraction. Annals of Pure and Applied Logic, 69:73–106, 1994.MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    G.M. Kelly and R.H. Street. Review of the elements of 2-categories. volume 420 of Lecture Notes in Mathematics, pages 75–103. Springer Verlag, 1974.Google Scholar
  17. 17.
    J.R. Kennaway, J.W. Klop, M.R. Sleep, and F.J. de Vries. On the Adequacy of Graph Rrewriting for Simulating Term Rewriting. ACM Trans. Program. Lang. Syst., 16:493–523, 1994.CrossRefGoogle Scholar
  18. 18.
    A. Kock and G.E. Reyes. Doctrines in Categorical Logic. In J. Bairwise, editor, Handbook of Mathematical Logic, pages 283–313. North Holland, 1977.Google Scholar
  19. 19.
    Y. Lafont. Equational Reasoning with 2-dimensional Diagrams. In Term Rewriting, French Spring School of Theoretical Computer Science, volume 909 of LNCS, pages 170–195. Springer Verlag, 1995.Google Scholar
  20. 20.
    C. Laneve and U. Montanari. Axiomatizing permutation equivalence in the λ-λ-calculus. Mathematical Structures in Computer Science, 6:219–249, 1996.MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    F.W. Lawvere. Functorial Semantics of Algebraic Theories. Proc. National Academy of Science, 50:869–872, 1963.MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    S. Mac Lane. Categories for the working mathematician. Springer Verlag, 1971.Google Scholar
  23. 23.
    J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoret. Comput. Sci., 96:73–155, 1992.MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    M.J. Plasmeijer and M.C.J.D. van Eekelen. Functional Programming and Parallel Graph Rewriting. Addison Wesley, 1993.Google Scholar
  25. 25.
    A.J. Power. An abstract formulation for rewrite systems. In Proceedings Category Theory in Computer Science, volume 389 of LNCS, pages 300–312. Springer Verlag, 1989.Google Scholar
  26. 26.
    D.E. Rydehard and E.G. Stell. Foundations of equational deductions: A categorical treatment of equational proofs and unification algorithms. In Proceedings Category Theory in Computer Science, volume 283 of LNCS, pages 114–139. Springer Verlag, 1987.Google Scholar
  27. 27.
    M.R. Sleep, M.J. Plasmeijer, and M.C. van Eekelen, editors. Term Graph Rewriting: Theory and Practice. Wiley, London, 1993.MATHGoogle Scholar
  28. 28.
    J. Staples. Computation of graph-like expressions. Theoret. Comput. Sci., 10:171–195, 1980.MATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    J.G. Stell. Categorical Aspects of Unification and Rewriting. PhD thesis, University of Manchester, 1992.Google Scholar
  30. 30.
    R. Street. Categorical structures. In M. Hazewinkel, editor, Handbook of Algebra, pages 529–577. Elsevier, 1996. *** DIRECT SUPPORT *** A0008C33 00003Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • A. Corradini
    • 1
  • F. Gadducci
    • 2
  1. 1.CWIAmsterdamThe Netherlands
  2. 2.TUB, Fachbereich 13 InformatikBerlinGermany

Personalised recommendations