Advertisement

Minimal set unification

  • Puri Arenas-Sánchez
  • Agostino Dovier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 982)

Abstract

A unification algorithm is said to be minimal for a unification problem if it generates exactly a complete set of minimal unifiers, without instances, without repetitions. Aim of this paper is to describe a new set unification algorithm minimal for a significant collection of sample problems that can be used as benchmarks for testing any set unification algorithm. To this end, a deep combinatorial study for such problems has been realized. Moreover, an existing naïve set unification algorithm has been also tested in order to show its bad behavior for most of the sample problems.

Keywords

Logic Programming with Sets CLP Unification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arenas-Sánchez, P., and Dovier, A. Minimal Set Unification. Technical Report: TR-6/95, Università di Pisa, dip. di Informatica, april 1995.Google Scholar
  2. 2.
    Büttner, W., and Simonis, H. Embedding Boolean Expressions into Logic Programming. Journal of Symbolic Computation 4 (1987), 191–205.Google Scholar
  3. 3.
    Dovier, A., Omodeo, E., Pontelli, E., and Rossi, G. Embedding Finite Sets in a Logic Programming Language. In 3rdInternational Workshop on Extension of Logic Programming (1993), E. Lamina and P. Mello, Eds., vol. 660 of Lecture Notes in Artificial Intelligence, Springer-Verlag, Berlin, pp. 150–167.Google Scholar
  4. 4.
    Dovier, A., and Pontelli., E. A WAM based Implementation of a Logic Language with Sets. In Proc. Fifth Int'l Symp. on Programming Language Implementation and Logic Programming (1993), M. Bruynooghe and J. Penjam, Eds., vol. 714 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, pp. 275–290.Google Scholar
  5. 5.
    Dovier, A., and Rossi, G. Embedding Extensional Finite Sets in CLP. In Proc. of International Logic Programming Symposium, ILPS'93 (1993), D. Miller, Ed., The MIT Press, Cambridge, Mass., pp. 540–556.Google Scholar
  6. 6.
    Gervet, C. Conjunto: Constraint Logic Programming with Finite Set Domains. In Proc. of International Logic Programming Symposium, ILPS'94 (1994), M. Bruynooghe, Ed., The MIT Press, Cambridge, Mass., pp. 339–358.Google Scholar
  7. 7.
    Jaffar, J., and Maher, M. J. Constraint Logic Programming: A Survey. The Journal of Logic Programming 19-20 (1994), 503–581.Google Scholar
  8. 8.
    Jayaraman, B. Implementation of Subset-Equational Programs. Journal of Logic Programming 12, 4 (1992), 299–324.Google Scholar
  9. 9.
    Kapur, D., Narendran, P. NP-completeness of the set unification and matching problems. In Proc. 8th CADE, 1986, vol. 230 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, pp. 489–495.Google Scholar
  10. 10.
    Knuth, D. E. The Art of Computer Programming, vol. 1-Fundamental Algorithms. Addison-Wesley, 1968.Google Scholar
  11. 11.
    Huet, G. Résolution d'équations dans des langages d'ordre 1,2,...,ω. Thèse d'État, Univ. de Paris, VII, 1976.Google Scholar
  12. 12.
    Legeard, B., and Legros, E. Short overview of the CLPS system. In Proc. Third Int'l Symp. on Programming Language Implementation and Logic Programming (august 1991), J. Maluszynsky and M. Wirsing, Eds., vol. 528 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, pp. 431–433.Google Scholar
  13. 13.
    Siekmann, J. H. Unification theory. In Unification, C. Kirchner, Ed. Academic Press, 1990.Google Scholar
  14. 14.
    Stolzenburg, F. An Algorithm for General Set Unification and its Complexity. In Proc. of Workshop on Logic Programming with Sets, in conjunction with ICLP'93 (1993), E. G. Omodeo and G. Rossi, Eds. Budapest.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Puri Arenas-Sánchez
    • 1
  • Agostino Dovier
    • 2
  1. 1.Dpto. Informática y Automática, Fac. C.C. MatemáticasU.C.M.Madrid
  2. 2.Dip. di InformaticaUniv. di PisaPisa (I)

Personalised recommendations