Exploiting inductive bias shift in knowledge acquisition from ill-structured domains

  • Luis Talavera
  • Ulises Cortés
Short Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1319)


Machine Learning (ML) methods are very powerful tools to automate the knowledge acquisition (KA) task. Particularly, in illstructured domains where there is no clear idea about which concepts exist, inductive unsupervised learning systems appear to be a promising approach to help experts in the early stages of the acquisition process. In this paper we examine the concept of inductive bias, which have received great attention from the ML community, and discuss the importance of bias shift when using ML algorithms to help experts in constructing a knowledge base (KB) A simple framework for the interaction of the expert with the inductive system exploiting bias shift is shown. Also, it is suggested that under some assumptions, bias selection in unsupervised learning may be performed via parameter setting, thus allowing the user to shift the system bias externally.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Béjar. Adquisición automática de conocimiento en dominios poco estructurados. PhD thesis, Facultat d'Informàtica de Barcelona, UPC, 1995.Google Scholar
  2. 2.
    J. Béjar, U. Cortés, R. Sanguesa, and M. Poch. Experiments with domain knowledge in knowledge discovery. In Proceedings of the 1st. International Conference on the Practical Application of Knowledge Discovery and Data Mining, London, UK, 1997.Google Scholar
  3. 3.
    D. F. Gordon and M. Desjardins. Evaluation and selection of biases in machine learning. Machine Learning, 20(1-2):5–22, 1995.Google Scholar
  4. 4.
    R. S. Michalski. Understanding the nature of learning: issues and research directions. In R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors, Machine Learning: An Artificial intelligence approach, vol.II. Morgan Kauffmann, Los Altos, CA, 1986.Google Scholar
  5. 5.
    R. S. Michalski and R. E. Stepp. Learning from observation: Conceptual clustering. In R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors, Machine Learning: An Artificial intelligence approach, pages 331–363. Morgan Kauffmann, Los Altos, CA, 1983.Google Scholar
  6. 6.
    T. M. Mitchell. Generalization as search. Artificial Intelligence, (18):203–226, 1982.Google Scholar
  7. 7.
    J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986.Google Scholar
  8. 8.
    S. Russell and B. Grosof. Declarative bias: An overview. In P. Benjamin, editor, Representation and Inductive Bias. Kluwer Academic Publishers, Dordrecht, 1989.Google Scholar
  9. 9.
    L. Talavera. Bias selection and knowledge acquisition in ill-structured domains. Technical report, Departament de Lleguatges i Sistemes Informàtics, UPC, 1997.Google Scholar
  10. 10.
    L. Talavera and U. Cortés. Generalización y atención selectiva para la formación de conceptos. In V Congreso Iberoamericano de Inteligencia Artificial, IBERAMIA96, pages 320–330, Cholula, Puebla, Mexico, 1996. Limusa, Mexico.Google Scholar
  11. 11.
    L. Talavera and U. Cortés. Inductive hypothesis validation and bias selection in unsupervised learning. In Jan Vanthienen and Frank van Harmelen, editors, Proceedings of the 4th. European Symposium on the Validation and Verification of Knowledge Based Systems, EUROVAV-97, pages 169–179, Leuven, Belgium, 1997.Google Scholar
  12. 12.
    J. J. F. Vasco, C. Faucher, and Eugene Chouraqui. A knowledge acquisition tool for multi-perspective concept formation. In 9th European Knowledge Acquisition Workshop, EKAW'96, pages 227–244. Springer Verlag, 1996.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Luis Talavera
    • 1
  • Ulises Cortés
    • 1
  1. 1.Departament de Llenguatges i Sistemes InformàticsUniversitat Politècnica de CatalunyaBarcelona, CataloniaSpain

Personalised recommendations