Advertisement

Delete operations and Horn formulas

  • Rüdiger Schätz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 385)

Abstract

We study three delete operations, based on different heuristics. These operations are increasingly complex. In view of implementations and practical applications, we are especially interested in their behaviour concerning propositional definite Horn formulas.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AM 82]
    Alchourrón, Carlos E./Makinson, David (1982): Hierarchies of regulations and their logic. In: Hilpinen, R. (ed.): New studies in deontic logic. Dordrecht, pp. 125–148Google Scholar
  2. [Du 06]
    Duhem, Pierre (1906): La Théorie Physique: Son Objet et Sa Structure. Paris. Translated by Wiener, Philip (1954) as: The Aim and Structure of Physical Theory. PrincetonGoogle Scholar
  3. [FUV 83]
    Fagin, Ronald/Ullman, Jeffrey D./Vardi, Moshe Y. (1983): On the semantics of updates in databases. In: Proc. 2nd ACM Symp. on Princ. of Database Syst., pp. 352–365Google Scholar
  4. [FUKV 86]
    Fagin, Ronald/Kuper, Gabriel M./Ullman, Jeffrey D/Vardi, Moshe Y. (1986): Updating Logical Databases. Advances in Computing Research, vol. 3, pp. 1–18Google Scholar
  5. [Ha 76]
    Harding, Sandra G. (Ed.) (1976): Can theories be refuted? Essays on the Duhem-Quine Thesis. Dordrecht/BostonGoogle Scholar
  6. [KBL 87]
    Kleine Büning, Hans/Lettmann, Theodor (1987): Representation Independent Query and Update Operations on Propositional Definite Horn Formulas. In: Börger, Egon (Ed.): Computation Theory and Logic. Berlin et al., pp. 208–223Google Scholar
  7. [Lö 88]
    Löwen, Ulrich (1988): Optimierung von logischen Formeln im Hinblick auf Herleitungsfragen. Dissertation, Universität—Gesamthochschule—DuisburgGoogle Scholar
  8. [Po 80]
    Popper, Karl R. (1935): Logik der Forschung. Wien. Translated as: The Logic of Scientific Discovery. New York 1959/Tenth impression (revised) London et al. 1980Google Scholar
  9. [Schä 88]
    Schätz, Rüdiger (1988): Formalizing Falsification: Three Delete Operations. Schriftenreihe des Fachbereichs Mathematik, no. 138, Universität—Gesamthochschule—DuisburgGoogle Scholar
  10. [We 86]
    Weber, A. (1986): Updating propositional formulas. In: Proc. of the 1st Int. Conf. on Expert Database Syst. Charleston, pp. 373–386Google Scholar
  11. [Wi 88]
    Winslett, Marianne (1988): A Model-based Approach to Updating Databases with Incomplete Information. ACM Transactions on Database Systems, vol. 13, no. 2, pp. 167–196CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Rüdiger Schätz
    • 1
  1. 1.FB 11 — Praktische InformatikUniversität — GH — DuisburgDuisburg 1West-Germany

Personalised recommendations