On the existence of fair schedulers

  • Lutz Priese
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 385)


We proof that any ω-regular language can be accepted by a letter-fair and a *-letter-fair scheduler, where *-letter-fairness also forbids starvation due to conspiracy of some processes. On the other hand, for a similar fairness concept, namely edge- or *-edge-fairness, there are simple ω-regular languages without fair schedulers.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K.R. Apt and E.R. Olderog, Proof Rules and Transformation Dealing with Fairness, Sci. Comput. Programming 3 (1983) 65–100CrossRefGoogle Scholar
  2. 2.
    E. Best, Fairness and Conspiracies, Inform. Process. Lett. 18 (1984) 215–220CrossRefGoogle Scholar
  3. 3.
    L. Boasson, M. Nivat, Adherences of Languages, J. Comp. Sys. Sci. 20 (1980), 285–309CrossRefGoogle Scholar
  4. 4.
    J.R. Büchi, On a Decision Method in Restricted Second-Order Arithmetic, Proc. 1960 Intern. Congr. on Logic, Methodology and Philosophy of Science (Stanford University Press, 1960), 1–11Google Scholar
  5. 5.
    Ph. Darondeau, About Fair Asynchrony, TCS 37 (1985) 305–336CrossRefGoogle Scholar
  6. 6.
    N. Francez, Fairness, Springer-Verlag, Berlin (1986)Google Scholar
  7. 7.
    I. Guessarian, W. Niar, An Automaton Characterization of Fairness in SCCS, LNCS 294 (1988) 356–272Google Scholar
  8. 8.
    I. Guessarian and L. Priese, On the Minimal Number of x Operators in Fair SCCS-Processes, to appear in IPLGoogle Scholar
  9. 9.
    D. Harel, Effective Transformations on Infinite Trees, with Application to High Undecidability, Dominoes and Fairness, J. ACM 33 (1986) 224–248CrossRefGoogle Scholar
  10. 10.
    M. Hennessy and R. de Nicola, Testing Equivalences for Processes, TCS 34 (1984) 83–133Google Scholar
  11. 11.
    J. Hoogeboom, G. Rozenberg, Infinitary Languages, LNCS 224 (1986), 266–342Google Scholar
  12. 12.
    R. McNaughton, Testing and Generating Infinite Sequences by a Finite Automaton, Information and Control (1966), 521–530Google Scholar
  13. 13.
    R. Milner, A Calculus of Communicating Systems, LNCS 92 (1980)Google Scholar
  14. 14.
    D.E. Muller, Infinite Sequences and Finite Machines, Proc. 4th Ann. Symp. on Switching Circuit Theory (1903), 3–16Google Scholar
  15. 15.
    E.R. Olderog und K.R. Apt, Transformations realizing fairness assumptions for parallel programs. TR 84-8, LITP, Paris, 1984Google Scholar
  16. 16.
    D. Park, Concurrency and Automata on Infinite Sequences, LNCS 104 (1981), 167–183Google Scholar
  17. 17.
    L. Priese, R. Rehrmann and U. Willecke-Klemme, An Introduction to The Regular Theory of Fairness, TCS 54 (1987), 139–163CrossRefGoogle Scholar
  18. 18.
    L. Priese, Fairness, EATCS Bulletin Vol. 35 (1989), 171–180Google Scholar
  19. 19.
    J.P. Queille and J. Sifakis, Fairness and Related Properties in Transition Systems — a Temporal Logic to deal with Fairness, Acta Inform. 19 (1983) 195–220CrossRefGoogle Scholar
  20. 20.
    R. Rehrmann, Deciding the Path-and Word-Fair Equivalence Problem, Bericht Nr. 43, Reihe Theoretische Informatik, Univ.-GH-Paderborn (1987), 31 pp.Google Scholar
  21. 21.
    W. Thomas, Automata on Infinite Objects, to appear in: Handbook of Theoretical Computer Science (J.V. Leeuwen, Ed.), North-Holland, AmsterdamGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Lutz Priese
    • 1
  1. 1.FB 17, Univ.-GH-Paderborn, FRG Maurice Nivat L.I.T.P.Université de Paris 7ParisFrance

Personalised recommendations