Gentzen-Systems for propositional temporal logics

  • Barbara Paech
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 385)


We give sound and complete, cut-free Gentzen-Systems for linear and branching temporal logic with {o, unless} and for linear and branching regular logic. This is the first time that branching time logics with regular operators are investigated.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Abadi,Z. Manna Non-clausal temporal deduction (Logics of Programs, Springer-Verlag LNCS 193, pp1–15, 1985)Google Scholar
  2. [2]
    M. Ben-Ari,J.Y. Halpern,A. Pnueli Deterministic propositional dynamic logic: Finite models, complexity and completeness (JCSS 25,pp 402–417, 1982)Google Scholar
  3. [3]
    J.R. Büchi On a decision method in restricted second order arithmetic (Logic,Methodology and Philosophy of Science 1960, Stanford Univ.Press, Stanford,Calif.,pp 1–11, 1962)Google Scholar
  4. [4]
    A. Cavalli,L. Farinas del Cerro A decision method for linear temporal logic (7th Int. Conf. on Automated Deduction, Springer-Verlag LNCS 170, pp 113–127, 1984)Google Scholar
  5. [5]
    R.L.Constable et al. Implementing Mathematics with the Nuprl Proof Development System (Prentice-Hall,1986)Google Scholar
  6. [6]
    E.A. Emerson,J.Y. Halpern Decision procedures and expressiveness in the temporal logic of branching time (JCSS 30, pp 1–24, 1985)Google Scholar
  7. [7]
    G. Gentzen Untersuchungen über das logische Schließen I (Mathematische Zeitschrift 39, pp 177–210, 1933)Google Scholar
  8. [8]
    D. Harel,D. Kozen,R. Parikh Process Logic: Expressiveness, decidability and completeness (JCSS 25, pp 144–170, 1982)Google Scholar
  9. [9]
    D. Harel,D. Peleg Process Logic with regular formulas (TCS 38, pp 307–322, 1985)CrossRefGoogle Scholar
  10. [10]
    J.E.Hopcroft,J.D.Ullman Introduction to automata theory, languages and computation (Addison-Wesley, 1979)Google Scholar
  11. [11]
    J.A.W. Kamp Tense Logic and the theory of linear order (PhD thesis Univ.of Calif., LA,1968)Google Scholar
  12. [12]
    F.Kröger Temporal Logic of Programs (Springer-Verlag, 1987)Google Scholar
  13. [13]
    R. Ladner Application of Model theoretic games to discrete linear orders and finite automata (Information and Control 33, pp 281–303, 1977) ΩCrossRefGoogle Scholar
  14. [14]
    D. Miller, A. Felty An integration of resolution and natural deduction theorem proving (Nat.Conf.on AI, Philadelphia,PA, 1986)Google Scholar
  15. [15]
    B. Moszkowski Executing temporal logic programs (Cambridge, Univ.Press, 1986)Google Scholar
  16. [16]
    H. Nishimura Sequential method in propositional dynamic logic (Acta Informatica 12, pp 377–400, 1979)CrossRefGoogle Scholar
  17. [17]
    B.Paech Gentzen-Systems for propositional temporal logics (LMU München, Institut für Informatik, Bericht 88/01, 1988)Google Scholar
  18. [18]
    V.R.Pratt Semantical considerations on Floyd-Hoare logic (17th IEEE Symp. on Foundations of Computer Science,pp 109–121, 1976)Google Scholar
  19. [19]
    R.Rosner, A.Pnueli A Choppy Logic (Logic in Computer Science,pp 306–314, 1986)Google Scholar
  20. [20]
    W. Thomas Star-free regular sets of ω-sequences (Information and Control 42, pp 148–156, 1979)CrossRefGoogle Scholar
  21. [21]
    M.K. Valiev On axiomatization of deterministic propositional dynamic logic (Springer-Verlag LNCS 74, pp 482–491, 1979)Google Scholar
  22. [22]
    P. Wolper Temporal logic can be more expressive (Information and Control 56, pp 72–99, 1983)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Barbara Paech
    • 1
  1. 1.Institut für InformatikLudwig-Maximilians-UniversitätMünchen 2

Personalised recommendations