Advertisement

Boolean circuit complexity of algebraic interpolation problems

  • Marek Karpinski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 385)

Abstract

We present here some recent results on fast parallel interpolation of multivariate polynomials over finite fields. Some applications towards the general conversion algorithms for boolean functions are also formulated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AL 86]
    Adleman, L.M., Lenstra, H.K., Finding Irreducible Polynomials over Finite Fields, Proc. 18th ACM STOC (1986), pp. 350–355.Google Scholar
  2. [B 81]
    Ben-Or, M., Probabilistic Algorithms in Finite Fields, Proc. 22th IEEE FOCS (1981), pp. 394–398.Google Scholar
  3. [BT 88]
    Ben-Or, M., Tiwari, P., A Deterministic Algorithm for Sparse Multivariate Polynomial Interpolation, Proc. 20th ACM STOC (1988), pp. 301–309.Google Scholar
  4. [Be 70]
    Berlekamp, E.R., Factoring Polynomials over Large Finite Fields, Math. Comp. 24 (1970), pp. 713–753.Google Scholar
  5. [C]
    Cauchy, A.L., Exercises d'Analyse et de Phys. Math., Vol 2, Paris, Bachelier (1841), pp.151–159.Google Scholar
  6. [CDGK 88]
    Clausen, M., Dress, A., Grabmeier, J., Karpinski, M., On Zero-Testing and Interpolation of k-Sparse Multivariate Polynomials over Finite Fields, Research Report No.8522-CS, University of Bonn (1988); to appear in Theoretical Computer Science (1989).Google Scholar
  7. [Co 85]
    Cook, S.A., A Taxonomy of Problems with Fast Parallel Algorithms, Information and Control 64 (1985), pp. 2–22.CrossRefGoogle Scholar
  8. [Ga 83]
    von zur Gathen, J., Factoring Sparse Multivariate Polynomials, Proc. 24th IEEE FOCS (1983), pp. 172–179.Google Scholar
  9. [Ga 84]
    von zur Gathen, J., Parallel Algorithm for Algebraic Problems, SIAM J. Comput., 13 (1984), 808–824.Google Scholar
  10. [GK 87]
    Grigoriev, D.Y., Karpinski, M., The Matching Problem for Bipartite Graphs with Polynomially Bounded Permanents is in NC, Proc. 28th IEEE FOCS (1987), Los Angeles, 1987, pp. 166–172.Google Scholar
  11. [GKS 88]
    Grigoriev, D.Y., Karpinski, M., Singer, M.F., Fast Parallel Algorithms for Sparse Multivariate Polynomial Interpolation over Finite Fields, Research Report No.8523-CS, University of Bonn (1988); submitted to SIAM J. Comput., 1988.Google Scholar
  12. [Ka 85]
    Kaltofen, E., Computing with Polynomials Given by Straight-Line Programs I, Greatest Common Divisors, Proc. 17th ACM STOC (1985), pp. 131–142.Google Scholar
  13. [KT 88]
    Kaltofen, E., Trager, B., Computing with Polynomials Given by Black Boxes for their Evaluations: Greatest Common Divisor, Factorization, Seperation of Numerators and Denominators, Proc. 29th IEEE FOCS (1988), pp. 296–305.Google Scholar
  14. [KR 88]
    Karp, R.M., Remachandran, V., A Survey of Parallel Algorithms for Shared-Memory Machines, Research Report No. UCB/CSD 88/407, University of California, Berkeley (1988); to appear in Handbook of Theoretical Computer Science, North Holland (1989).Google Scholar
  15. [LN 83]
    Lidl, H., Niederreiter, H., Finite Fields, Encyclopedia of Mathematics and its Applications, Vol.10, Cambridge University Press (1983).Google Scholar
  16. [MS 72]
    MacWilliams, F.J., Sloane, N.J.A., The Theory of Error Correcting Codes, North Holland (1972).Google Scholar
  17. [We 87]
    Wegener, I., The Complexity of Boolean Functions, Teubner (1987).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Marek Karpinski
    • 1
    • 2
  1. 1.Dept. of Computer ScienceUniversity of BonnGermany
  2. 2.International Computer Science InstituteBerkeley

Personalised recommendations