Skip to main content

Molding of polymers under conditions of vibration effects

  • Conference paper
  • First Online:
Polymer Processing

Part of the book series: Advances in Polymer Science ((POLYMER,volume 93))

Abstract

This paper reviews the results of investigations into low-frequency mechanical and high-frequency (ultrasonic) vibration effects upon flowable polymeric systems, primarily, on molten commercial thermoplastics. We tried to systematize possible techniques to realize vibration in molding of polymers. Theoretical and experimental corroboration is provided for major effects obtained at cyclic (shear and bulk) strains of molten polymers and compositions based thereon. It is demonstrated that combined stress of polymeric media is attained under overlapping vibrations and this results in a decreased effective viscosity of the melts, a drop i the pressure required to extrude them through molding tools, increased critical velocities of unstable flow occurrence and a reduced load on the thrust elements of extruder screws.

Power consumption aspects have been critically analyzed to reveal that vibration effects in molding heads may reduce specific power consumption in extrusion machines, while simultaneously improving the quality of manufactured products.

The paper gives an overview of effects occurring or acoustic treatment of dissolved and molten polymers. Emphasis is made on acoustic cavitation discovered recently not only in low-viscous fluids but also in molten polymers. Major guidelines have been specified for practical utilization of acoustic treatment of flowable polymers in molding: intensification of extrusion processes, reduction in thickness of produced films, directed mechanical destruction, chemical “activation” of melts, etc. Efficiency of overlapping high-frequency vibrations in molding of molten thermoplastics is discussed in terms of power consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

4 References

  1. Fridman ML, Peshkovsky SL (1979) Plasticheskiye massy 7: 29

    Google Scholar 

  2. Azovskaya VA, Safonova IL (1981) Himicheskaya promyshlennost za rubezhom 8(224): 45

    Google Scholar 

  3. Mytzyl VA, Smirnova TN (1983) Himicheskaya promyshlennost za rubezhom 1(241): 1

    Google Scholar 

  4. Grozdova GV, Smirnova TN (1986) Himicheskaya promysh. za rubezhom 3(279): 1

    Google Scholar 

  5. Fridman ML (1988) Development of equipment for mixing of molten polymers, ZINTIhimheftemash, Moscow

    Google Scholar 

  6. Vinogradov GV et al. (1970) Inzhenerno-physichesky zhurnal 19: 377

    Google Scholar 

  7. Prokunin AN, Fridman ML, Vinogradov GV (1971), Mehanika polymerov 3: 497

    Google Scholar 

  8. Malkin A. Ya, Isayev AI, Vinogradov GV (1975) Mehanika polymerov 2: 306

    Google Scholar 

  9. Vinogradov GV, Fridman ML, Malkin AYa, Yarlikov BV (1970) Rheol. Acta 9: 323

    Google Scholar 

  10. Basov NI, Lubartovitch VA (1979) Vibromolding of polymers, Himiya, Leningrad

    Google Scholar 

  11. Myasnikov VP (1961) Zhurnal prikladnoy mehaniki i tehnicheskoy fisiky 5: 76

    Google Scholar 

  12. Gutkin AM (1961) Colloidny zhurnal 23: 20

    Google Scholar 

  13. Buchman YuA et al (1984) Thermal mass transfer 5(2): 17

    Google Scholar 

  14. Buchman YuA et al (1985) Inzh.-phys. zhurnal 49: 221

    Google Scholar 

  15. Schulman ZP, Zadvornyh VN, Litvinov AI (1987) Rheodynamics of nonlinearly viscoplastic fluids in circular channels with movable walls. Acad. of Sc. Bel. SSR, Minsk, Preprint 45: 51c

    Google Scholar 

  16. Schulman ZP (1975) Convective heat & mass transfer in rheologically complex fluids, Energiya, Moscow

    Google Scholar 

  17. Colleman BD, Noll WI (1959) J. Appl. Phys. 30: 1508

    Google Scholar 

  18. Fredrickson AG (1960) Chem. Engng. Sci. 11: 252

    Google Scholar 

  19. Tanner RI (1960) J. Mech. Engng. Sci. 2: 21

    Google Scholar 

  20. Savins IG, Wallick GS (1966) AIChE J. 12: 357

    Google Scholar 

  21. Bortnikov VG, Kuznetzov NV, Tyabin NV (1967) Plasticheskiye massy, 8: 49

    Google Scholar 

  22. Tyabin NV, Bortnikov VG, Vachagin KD (1968) Plasticheskiye massy 3: 351

    Google Scholar 

  23. Fridman ML (1970) Rheological properties and high-speed extrusion of polypropylene. Summary of the thesis, INHS, Ac. Sci. USSR, Moscow

    Google Scholar 

  24. Prokunin AN, Fridman ML, Vinogradov GV (1971) Mehanika polymerov 3: 497

    Google Scholar 

  25. Winter HH (1973) Rheol. Acta 12: 1

    Google Scholar 

  26. Winter HH (1975) Rheol. Acta, 14: 764

    Google Scholar 

  27. Colleman BD, Markwitz H, Noll WI (1966) Viscometri flow of non-Newtonian fluids. Springer Tracts of Nat. Philos, Berlin Heidelberg New York

    Google Scholar 

  28. Fridman ML, Peshkovsky SL, Vinogradov GV (1981) Polym. Engng. Sci. 21: 755

    Google Scholar 

  29. Fridman ML (1980) Regulation of rheological properties of thermoplastics and compositions based thereon in order to intensify molding processes. Summary of the thesis, In. Chem. Phys. Ac. Sci. USSR, Moscow

    Google Scholar 

  30. Fridman ML (1977) Technology of processing of crystall. polyolefins, Himiya, Moscow

    Google Scholar 

  31. Fridman ML, Isayev AI, Smyslova ES (1973) Study of extrusion flow under conditions of molding tool vibration. Proceedings of 18th All-Union Conf. on HMC, Kazan, p. 226

    Google Scholar 

  32. Litvinov VG (1982) Flow of non-linearly viscous fluid, Nauka, Moscow

    Google Scholar 

  33. Vinogradov GV, Malkin AYa (1980) Rheol. of Polymers, Mir, Moscow

    Google Scholar 

  34. Prokunin AN (1985) Some effects in flow of viscoelastic fluids. Summary of the thesis, IVS Ac. Aci. USSR, Leningrad

    Google Scholar 

  35. Chang Dee Han (1975) Rheol. in polym. processing, Academic, New York Translation into Russian edited by Vinogradov GV and Fridman ML (1979), Himiya, Moscow

    Google Scholar 

  36. Genender MM (1985) Extrusion of PVC-compositions through heads with rotating core, Summary of the thesis, Mendeleyev Inst. Chem. Technol., Moscow

    Google Scholar 

  37. Tadmar Z, Gogos CG (1979) Principles of pölym. processing, Wiley, New York Translation into Russian edited by R. V. Torner (1984), Himiya, Moscow

    Google Scholar 

  38. Volov BM (1986) Study and optimization of design and technology for manufacturing of pressure hoses of PVC-compositions. Summary of the thesis, Lomonosov Inst. Fine Chem. Tech., Moscow

    Google Scholar 

  39. Panov AK, Vachagin KD, Fridman ML (1975) Effect of periodic mechan. strains upon flow of molten polymers in prismatic channels, In: Rheology of polymer and dispersed systems and rheophysics Minsk, vol 1, p 123

    Google Scholar 

  40. Ziprin MG (1977) Mehanika Polymerov, 1: 127, 2: 294, 6: 1093

    Google Scholar 

  41. Feitelson LA, Yakobsons EE (1977) Mehanika Polymerov 6: 1075

    Google Scholar 

  42. Feitelson LA (1985) Vibrothixotropy in polymers. Summary of the thesis, IMKM, Ac. Sci. Latv. SSR, Riga

    Google Scholar 

  43. Fridman ML, Konyshev YuV, Ivankov DV (1971) Injection unit of molding machine. Auth. Certif. USSR No. 291803, Bull. No. 4

    Google Scholar 

  44. Fridman ML, Prut EV (1984) Uspehy Himiyi, Ac. Sci. USSR 53(2): 309

    Google Scholar 

  45. Lipatov YuS (1984) Colloid chemistry of polymers, Naukova Dumka, Kiev

    Google Scholar 

  46. Chang Deen Han (1981), Multiphase flow in polym. processing, Academic, New York

    Google Scholar 

  47. Kissin Yu. V, Fridman ML (1977) Mehanika Polymerov 1: 143

    Google Scholar 

  48. Leonov AI, Prokunin AN (1983) Rheol. Acta 22: 137

    Google Scholar 

  49. Leonov AI (1984) Rheol. Acta 23: 591

    Google Scholar 

  50. Kissin YuV, Fridman ML (1975) Zhurn. Priklad. Spectroscopy 24: 929

    Google Scholar 

  51. Casulli G, Klermont GR, Von Zigler A, Mena B (1987), 3d Annu. Meet. Polym. Process. Soc. Program and Abstract, April 7–10

    Google Scholar 

  52. Ragotner MM, Gorodkin RG, Bukovitch IV, Smolsky MB (1983) In: Prikladnaya Mehanika i Rheophysica, Ac. Sci. Bel. SSR, Minsk, p 75

    Google Scholar 

  53. Buchman YuA, Sysoyev VI, Prokunin AN (1987) Auth. Certif. USSR No. 1295117, Bull. No. 9

    Google Scholar 

  54. Sysoyev VI (1988) Study of shaft sealing by viscoelastic fluids. Summary of the thesis. IMSS, Ural Scient. Centre, Ac. Sci. USSR, Perm

    Google Scholar 

  55. Flinn G (1967) Physics of acoustic caviation in fluids. In: Meson U (ed) Physical acoustics. Mir, Moscow, p 7

    Google Scholar 

  56. Akulichev VA (1968) Pulsation of cavities In: Roseberg LD (ed) Powerful ultrasonic fields, Nauka, Moscow, p 131

    Google Scholar 

  57. Fukusima K, Sanssen D, Kikuchi E (1972) Sound field characteristics related to operation of ultrasonic converters. In: Kikuchi E (ed) Ultrasonic converters. Mir, Moscow, p 353

    Google Scholar 

  58. Rosenberg LD (1968) Cavitation area In: Rosenberg LD (ed) Powerful ultrasonic fields. Nauka, Moscow, p 131

    Google Scholar 

  59. Kogarko BS (1964) Doklady AN SSSR 155: 779

    Google Scholar 

  60. Boguslavsky YuYa (1967) Akustichesky Zhurnal 13: 538

    Google Scholar 

  61. Peshkovsky SL, Yakovlev AD (1976) Akustichesky Zhurn. 22: 422

    Google Scholar 

  62. Peshkovsky SL (1986) Cavitation of fluid in acoustic wave In: Physical and chemical effects upon manufacturing processes, Metallurgiya, Moscow, p 93

    Google Scholar 

  63. Herrman V (1976) Determining equations of compacting porous materials. In: Shapiro GS (ed) Problems of the Theory of Plasticity. Mir, Moscow, p 178

    Google Scholar 

  64. Zeldovitch YaB, Reiser YuP (1966) Physics of shock waves and high-temperature hydrodynamic phenomena, Nauka, Moscow

    Google Scholar 

  65. Baramboym, NK (1978) Mechanochemistry of high-molecular compounds, Himiya, Moscow

    Google Scholar 

  66. Kazale A, Porter RS (1983) Polymer reactions under effects of stresses. Translation from English, Himiya, Leningrad

    Google Scholar 

  67. Elpiner IE (1963) Ultrasound. Physico-chemical and biological effects. Physmatgiz, Moscow

    Google Scholar 

  68. Simionesku K, Oprea K (1970) Mechanochemistry of high-molecular compounds, Mir, Moscow

    Google Scholar 

  69. Bernhardt E (1954) Ind. & Engin. Chem. 3: 742

    Google Scholar 

  70. Ferry J (1963) Viscoelastic properties of polymers, Izdatinlit, Moscow

    Google Scholar 

  71. Vinogradov GV, Yanovsky YuG, Isayev AI (1970) Effect of vibrations upon polymers. In: Vinogradov GV (ed) Progress of polymer rheology. Himiya, Moscow, p 79

    Google Scholar 

  72. Ziprin MG, Feitelson LA (1972) Mehanika Polymerov, 4: 689

    Google Scholar 

  73. Feitelson LA, Yakobson EE (1977) Mehanika Polymerov 6: 1125

    Google Scholar 

  74. Peshkovsky SL, Generalov MB, Kaufman IN (1971) Mehanika Polymerov 6: 1097

    Google Scholar 

  75. Peshkovsky SL (1971) Ultrasonic intensification of polymer material extrusion processes. Summary of the thesis, Inst. Chem. Mach. Build., Moscow

    Google Scholar 

  76. Karelin YuM, Mazurenko YuS, Peshkovsky SL (1973) Device for ultrasonic effect upon flow of molten polymers. In: Polymer equipment and processing of plastic masses, Tehnika, Kiev, p 31

    Google Scholar 

  77. Fridman ML, Gul VE (1975) Plasticheskiye Massy, 9: 27

    Google Scholar 

  78. Fridman ML, Peshkovsky SL, Vinogradov GV (1981) Polymer Eng. & Sci. 21: 755

    Google Scholar 

  79. Popov AV, Ischenko VG, Buryachenko AG (1970) Proizvodstvo Shin, Resinotehnicheskyh i Asbestotehnicheskyh Izdeliy, 6: 16

    Google Scholar 

  80. Askatelov AI (1972) Kauchuk i Resina, 3: 17

    Google Scholar 

  81. Popov AV (1968) Kauchuk i Resina 10: 49

    Google Scholar 

  82. Buryachenko AG (1969) Kauchuk i Resina 12: 18

    Google Scholar 

  83. Fridman ML, Peshkovsky SL, Popov VL (1978) Colloidny Zhurnal 4: 819

    Google Scholar 

  84. Ivanov AV, Bylalov YaM, Ismaylov TM (1975) Zavodskaya Laboratoriya, 6: 717

    Google Scholar 

  85. Abbas KB, Porter RS (1976) J. Appl. Polymer Sci. 20: 1289

    Google Scholar 

  86. Goetze KP, Porter RS (1971) J. Polymer Sci. 35: 189

    Google Scholar 

  87. Regel VR, Sluzker AI, Tomashevsky EE (1974) Kinetic nature of the strength of solid bodies, Nauka, Moscow

    Google Scholar 

  88. Engel T (1967) Mod. Plast. 1: 175; 1: 257

    Google Scholar 

  89. Zharov AA (1984) Uspehy Himyiy, Ac. Sci. USSR. 53: 236

    Google Scholar 

  90. Enikolopian NS (1984) Macromol. Chem. 8: 109

    Google Scholar 

  91. Larsen HA (1975) J. Phys. Chem. 61: 1643

    Google Scholar 

  92. Knapp R, Dailey J, Hammit F (1974) Cavitation, Mir, Moscow

    Google Scholar 

  93. Csang WJ, Csen HCh (1965) Phys. Fluids, 8: 758

    Google Scholar 

  94. Fogéer HS, Goddard (1970) Phys. Fluids, 3: 1135

    Google Scholar 

  95. Tanasawa J, Csang WJ (1970) J. Appl. Phys. 41: 4526

    Google Scholar 

  96. Avanesov AM, Avetysyan IA (1973) Izvestiya AN SSSR, Mehanika Zhidkosty i Gaza, 4: 170

    Google Scholar 

  97. Levitzky SP, Listrov AG (1974) PMTF, 1: 137

    Google Scholar 

  98. Avanesov AM, Avetysyan IA, Listrov AG (1976) Akustichesky Zhurnal 22: 812

    Google Scholar 

  99. Vinogradov GV, Elkin AJ, Sosin SE (1978) Polymer 19: 1458

    Google Scholar 

  100. Kornfeld MI (1951) Elasticity and strength of fluids, Moscow

    Google Scholar 

  101. Peshkovsky SL, Fridman ML, Brizitzky VI, Vinogradov GV, Tukachinsky AI (1981) Doklady AN SSSR, 258: 705

    Google Scholar 

  102. Zarembo LK, Krasilnikov VA (1966) Introduction to non-linear acoustics, Nauka, Moscow

    Google Scholar 

  103. Peshkovsky SL, Fridman ML, Tukachinsky AJ, Vinogradov GV, Eniklopian NS (1983) Polymer Composites 4: 126.

    Google Scholar 

  104. Fridman ML, Peshkovsky SL, Vinogradov GV (1980) In: Rheology 8-th Intern. Congr. Rheology Napoli vol 2 p 485

    Google Scholar 

  105. Fridman ML, Chalyh AE, Peshkovsky SL, Tukachinsky AI, Enikolopian NS (1983) Doklady AN SSSR, 273: 1169

    Google Scholar 

  106. Bylalov Ya M, Ismaylov TM, Ivanov AV, Lopchin VV (1976) Kauchuk i Resina 5: 33

    Google Scholar 

  107. Margulis MA (1984) Fundamentals of acoustic chemistry, Vyschaya Shkola, Moscow

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. L. Fridman

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this paper

Cite this paper

Fridman, M.L., Peshkovsky, S.L. (1990). Molding of polymers under conditions of vibration effects. In: Fridman, M.L. (eds) Polymer Processing. Advances in Polymer Science, vol 93. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0025814

Download citation

  • DOI: https://doi.org/10.1007/BFb0025814

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51376-6

  • Online ISBN: 978-3-540-46202-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics