A pumping lemma for context-free graph languages

  • Hans-Jörg Kreowski
List Of Contributions
Part of the Lecture Notes in Computer Science book series (LNCS, volume 73)


Each sufficiently large graph belonging to a context-free graph language (generated by an edge-replacement system) can be decomposed in three subgraphs FIRST, LINK and LAST, such that a suitable chain gluing of FIRST, LAST and N examples of LINK for each natural number N is also member of the language. This generalization of the well-known pumping lemma (also called Bar-Hillel's lemma, uvwxy lemma etc.) for context-free Chomsky languages is formulated and proved, where the iteration of LINK in the chain gluing leads to the pumping effect. The proof is based in canonical derivations and the embedding theorems studied in the algebraic theory of graph grammars.


Direct Derivation Terminal Part Derivation Step Graph Grammar Node Replacement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. /CuWo 78/.
    Culik, K. II/ Wood, D.: A Mathematical Investigation of Parallel Graph OL-Systems, this volumeGoogle Scholar
  2. /DeGh 78/.
    Della Vigna, P./ Ghezzi, C.: Context-free Graph Grammars, Inf. Contr. 37, 207–233 (1978)Google Scholar
  3. /Eh 78/.
    Ehrig, H.: Introduction to the Algebraic Theory of Graph Grammars, this volumeGoogle Scholar
  4. /EhLi 78/.
    Ehrig, H./ Liedtke, A.: Locally Star Gluing Formulas for a Class of Parallel Graph Grammars, this volumeGoogle Scholar
  5. /Fr 78/.
    Franck, R.: A Class of Linearly Parsable Graph-Grammars, Acta Informatica 10, 175–201 (1978)Google Scholar
  6. /He 75/.
    Heibey, H.W.: Ein Modell zur Behandlung Mehrdimensionaler Strukturen unter Berücksichtigung der in ihnen definierten Lagerelationen, Report No. 15, University of Hamburg, (1975)Google Scholar
  7. /HoUl 69/.
    Hopcroft, J.E./ Ullman, J.D.: Formal Languages and their Relation to Automata, Addison-Wesley 1969Google Scholar
  8. /Kr 77a/.
    Kreowski, H.-J.: Ein Pumping Lemma für kanten-kontextfreie Graph-Sprachen, Techn. Rep. 77-15, FB 20, TU Berlin (1977)Google Scholar
  9. /Kr 77b/.
    —: Manipulationen von Graphenmanipulationen, Dissertation, FB Informatik, TU Berlin (1977)Google Scholar
  10. /Na 78a/.
    Nagl, M.: Graph-Ersetzungssysteme: Theorie, Anwendungen, Implementierung, Habilitationsschrift, University of Erlangen (1978)Google Scholar
  11. /Na 78b/.
    —: A Tutorial and Bibliographical Survey on Graph Grammars, this volumeGoogle Scholar
  12. /Pr 71/.
    Pratt, T.: Pair Grammars, Graph Languages and String-to-Graph Translations, Journ. Comp. Syst. Sci. 5, 560–595, (1971)Google Scholar
  13. /Wa 70/.
    Wagner, K.: Graphentheorie, Bibliographisches Institut, Mannheim 1970Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • Hans-Jörg Kreowski
    • 1
  1. 1.Technische Universität BerlinGermany

Personalised recommendations