Trellis complexity of linear block codes via atomic codewords

  • Morteza Esmaeili
  • T. Aaron Gulliver
  • Norman P. Secord
Decoding Methods and Techniques
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1133)


The trellis complexity of a linear block code C over a field F is presented for C a subspace of the vector space V=∏ i=1 n V i over F, where V i (1≤i≤n) is a vector space over F. A generator matrix for the Reed-Muller codes is presented which is in trellis oriented form for the minimal L-section trellis diagram.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Kasami, T. Fujiwara, Y. Deskai and S. Lin, On structural complexity of the L-section minimal trellis diagram for binary linear block codes, IEICE Trans., E76-A (1993) 1411–1421.Google Scholar
  2. 2.
    F.R. Kschischang and V. Sorokine, On the trellis structure of block codes, IEEE Trans. Infor. Theory, 41 (1995) 1924–1937.Google Scholar
  3. 3.
    L.R. Bahl, J. Cocke, F. Jelinek and J. Raviv, Optimal decoding of linear codes for minimizing symbol error rate, IEEE Trans. Infor. Theory, 20 (1974) 284–287.Google Scholar
  4. 4.
    J.K. Wolf, Maximum likelihood decoding of linear block codes using a trellis, IEEE Trans. Inf. Theory, 24 (1978) 76–80.Google Scholar
  5. 5.
    G.D. Forney, Jr. and M.D. Trott, The dynamics of group codes: state spaces, trellis diagrams, and canonical encoders, IEEE Trans. Infor. Theory, 39 (1993) 1491–1513.Google Scholar
  6. 6.
    F. Harary, Graph Theory, New York:Addison-Wesley, 1972.Google Scholar
  7. 7.
    G.D. Forney, Jr., Coset codes part II: binary lattices and related codes, IEEE Trans. Infor. Theory, 34 (1988) 1152–1187.Google Scholar
  8. 8.
    S. Roman, Coding and Information Theory, Graduate Texts in Mathematics, 134 New York:Springer-Verlag, 1992.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Morteza Esmaeili
    • 1
  • T. Aaron Gulliver
    • 2
  • Norman P. Secord
    • 3
  1. 1.Department of Mathematics & StatisticsCarleton UniversityOttawaCanada
  2. 2.Department of Systems & Computer EngineeringCarleton UniversityOttawaCanada
  3. 3.Communications Research CentreStation H, OttawaCanada

Personalised recommendations