Some best rate 1/p quasi-cyclic codes over GF(5)

  • T. Aaron Gulliver
  • Vijay K. Bhargava
Algebraic Coding
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1133)


The class of quasi-cyclic (QC) codes has been proven to contain many good codes. In this paper, new rate 1/p QC codes over GF(5) are constructed using integer linear programming and heuristic combinatorial optimization. Many of these attain the maximum possible minimum distance for a linear code, and so are optimal. The others provide a lower bound on the maximum minimum distance. Power residue and self-dual QC codes are also presented.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.E. Brouwer, Tables of minimum-distance bounds for linear codes over GF(2), GF(3) and GF(4), lincodbd server,, Eindhoven University of Technology, Eindhoven, the NetherlandsGoogle Scholar
  2. 2.
    T.A. Gulliver and V.K. Bhargava, Some best rate 1/p and rate (p−1)/p systematic quasi-cyclic codes, IEEE Trans. Inf. Theory, 37 (1991) 552–555.Google Scholar
  3. 3.
    T.A. Gulliver and V.K. Bhargava, Some best rate 1/p and (p−1)/p quasi-cyclic codes over GF(3) and GF(4), IEEE Trans. Inform. Theory, 38 (1992) 1369–1374.Google Scholar
  4. 4.
    T. Kasami, A Gilbert-Varshamov bound for quasi-cyclic codes of rate 1/2, IEEE Trans. Inf. Theory 20 (1974) 679.Google Scholar
  5. 5.
    H.C.A. van Tilborg, On quasi-cyclic codes with rate 1/m, IEEE Trans. Inf. Theory, 24 (1978) 628–629.Google Scholar
  6. 6.
    G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial Optimization, New York: Wiley, 1988.Google Scholar
  7. 7.
    E.H.L. Aarts and P.J.M. van Laarhoven, Local search in coding theory, Discrete Math. 106/107 (1992) 11–18.Google Scholar
  8. 8.
    F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes, New York: North-Holland Publishing Co., 1977.Google Scholar
  9. 9.
    G.E. Séguin and G. Drolet, The theory of 1-generator quasi-cyclic codes, preprint, Royal Military College of Canada, Kingston, ON, 1991.Google Scholar
  10. 10.
    T.A. Gulliver, New optimal ternary linear codes, IEEE Trans. Inf. Theory, 41 (1995) 1182–1185.Google Scholar
  11. 11.
    G. Solomon and J.J. Stiffler, Algebraically punctured cyclic codes, Inf. and Control 8 (1965) 170–179.Google Scholar
  12. 12.
    C.L. Chen, W.W. Peterson, and E.J. Weldon, Jr., Some results on quasi-cyclic codes, Inf. and Control 15 (1969) 407–423.Google Scholar
  13. 13.
    T.A. Gulliver, M. Serra and V.K. Bhargava, The generation of primitive polynomials in GF(q) with independent roots and their applications for power residue codes, VLSI testing and finite field multipliers using normal basis, Int. J. Elect. 71 (1991) 559–576.Google Scholar
  14. 14.
    E.R. Berlekamp, Algebraic Coding Theory, New York: McGraw Hill, 1969.Google Scholar
  15. 15.
    J.S. Leon, V. Pless and N.J.A. Sloane, Self-dual codes over GF(5), J. Comb. Theory A 32 (1982) 178–194.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • T. Aaron Gulliver
    • 1
  • Vijay K. Bhargava
    • 2
  1. 1.Department of Systems & Computer EngineeringCarleton UniversityOttawaCanada
  2. 2.Department of Electrical & Computer EngineeringUniversity of VictoriaVictoriaCanada

Personalised recommendations