Advertisement

Design of nonlinear lag-lead compensators by extended linearization using symbolic computation techniques

  • Jesús Rodríguez-Millán
  • José Yépez
  • Bokor Jozsef
2 Theory and Methods
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1333)

Abstract

In this paper we report the development of NLLag-Lead, a symbolic computation tool allowing to automate the design of linear and nonlinear lead, lag and lag-lead compensators, for nth ordersingle-input single-output nonlinear dynamical control systems. The proposed nonlinear lag-lead compensators are straightforward structural nonlinear extensions of appropriate state variables representations of the linear lag-lead compensators, which for nonlinear extension purposes are represented as a cascade of an input PD like controller followed by an output first order linear dynamical system. This two-blocks decomposition transforms the design of a nonlinear extension of a lag-lead compensator into the design of a nonlinear PD controller and a nonlinear state-feedback controller. NLLag-Lead has been computationally implemented using Mathematica® as symbolic computational platform

Keywords

Lag-lead compensators Jacobian and extended linearization symbolic computation Mathematica® 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bar, M., Fritz, H. and Zeitz, M., Rechnergestdtzter Entwurfnichtlinearer Beobachter mit Hilfe einer symbolverarbeitenden Programmiersprache, Automatisierungstechnik 35, 177–183, 1987.Google Scholar
  2. [2]
    Birk, J. and Zeitz, M. Computer-Aided Design of Nonlinear Observers, IFAC Nonlinear Control Systems Design, 1–6, Capri, Italy, 1989.Google Scholar
  3. [3]
    Blankenship, G., Ghanadan, R., Kwatny, H., LaVigna, C. and Polyakov, V., Tools for Integrated Modeling, Design, and Nonlinear Control, IEEE Control Systems, 65–79, April 1995.Google Scholar
  4. [4]
    Blankenship, G., Kwatny, H., La Vigna, Ch. and Polyakov, V., Integrated Modeling and Design of Nonlinear Control Systems, Proc. American Control Conference, 3, 1395–1399, American Automatic Control Council, Albuquerque, 1997.Google Scholar
  5. [5]
    van Essen, H., Symbols speak louder than numbers: analysis and design of nonlinear control systems with the symbolic computation system MAPLE, Rep. WFW 92.061, Eindhoven Univ. Tech., Fac. of Mechanical Engineering, 1992.Google Scholar
  6. [6]
    Forsman, K., Applications of Gröbner Bases to Nonlinear Systems, Proc. ECC 91, 164–169, Grenoble, France, July 2–5, 1991.Google Scholar
  7. [7]
    Guay, M., McLellan, P. and Bacon, D., Computer Algebra Methods for Feedback Linearization using an Exterior Calculus Framework, Proc. American Control Conference, 3, 1385–1389, American Automatic Control Council, Albuquerque, 1997.Google Scholar
  8. [8]
    de Jager, Bram, Symbolics for Control: MAPLE used in Solving the Exact Linearization Problem, In Computer Algebra in Industry 2 (A.M. Cohen et al Editors), 291–311, John Wiley & Sons Ltd, London, 1995.Google Scholar
  9. [9]
    Loos, R., Introduction, In B. Buchberger, G. Collins and R. Loos (Editors), Computer Algebra, Symbolic and Algebraic Computation, Second Edition, pp. 1–10, Springer-Verlag, Wien, 1982.Google Scholar
  10. [10]
    Ogata, K., Modern Control Theory, Third Edition, Prentice-Hall, Upper Saddle River, 1997.Google Scholar
  11. [11]
    Ogunye, A., Process Control and Symbolic Computation: An Overview with Maple V, Maple in Engineering-A Special Issue of MapleTech, 3, 94–103, 1996.Google Scholar
  12. [12]
    Ogunye, A., Using Maple to Solve Multivariable Control Analysis and Design Problems for Systems Represented by Polynomial Matrices, Proc. American Control Conference, 3, 1380–1384, American Automatic Control Council, Albuquerque, 1997.Google Scholar
  13. [13.
    Ogunye, A. and Penlidis, A., State Space Computations Using Maple V, IEEE Control Systems, February 96, 70–77, 1996.Google Scholar
  14. [14]
    Plantin, J., Gunnarsson, J. and Germundson, R., Symbolic Algebraic Discrete Systems Theory: Applied to a Fighter Aircraft, Proc. 34th CDC, 1863–1864, New Orleans, December 1994.Google Scholar
  15. [15]
    Rodríguez-Millán, J., Control Systems Design Using Symbolic Computation Techniques, Cuadernos de Control, Volume 1-96, Postgrado de Control, Facultad de Ingenieria, Universidad de Los Andes, Mérida, 1996. (In Spanish)Google Scholar
  16. [17]
    Rodríguez-Millán, J., Analysis and Design of Nonlinear Control Systems Using Mathematica®, to appear in V. Lakshmikantham (Editor), Proceedings of the Second World Congress of Nonlinear Analysts, Elsevier Scientific Publisher Company, Amsterdam, 1997.Google Scholar
  17. [21]
    Rodríguez-Millán, J. and Cardillo, J., Symbolic Computing Aided Design of Nonlinear PID Controllers, In F. Pichler, R. Moreno-Diaz and R. Albrecht (Editors), Computer Aided Systems Theory, Lecture Notes in Computer Sciences 1030, pp. 253–270, Springer-Verlag, Berlin, 1996.Google Scholar
  18. [19]
    Rodríguez-Millán, J., Alzuru, Y., Cardillo, J. and Yépez, J., NLFeedback 2.0: A Symbolic Computation Tool for the Design of Extended Controllers and Observers for Nonlinear Control Systems with Stabilizable and Detectable Linearizations, Proceedings of the American Control Conference 97, Volume 3, 1390–1394, The American Automatic Control Council, Albuquerque, 1997.Google Scholar
  19. [20]
    Rodríguez-Millán, J. and Bokor, J., Nonlinear Extensions of Classical Controllers Using Symbolic Computation Techniques: A Dynamical Systems Unifying Approach, Accepted for the Annual Meeting of GAMM, GAMM 97, March 24–27, Regensburg, 1997. (Submitted for publication).Google Scholar
  20. [18]
    Rodr∥uez-Millán, J., Symbolic Computation Aided Analysis and Design of Nonlinear Dynamical Control Systems: Symbolic Graphical Computation Tools for Thought, Hungarian Academy of Sciences, Computer and Automation Research Institute, Budapest, 1997.Google Scholar
  21. [16]
    Rodríguez-Milllán, J., Symbolic Computation and Dynamical Control Systems: A Survey, (Internal Report), MTA-SZTAKI, Budapest, 1996.Google Scholar
  22. [22]
    Rodríguez-Millán, J. and Serrano, S., Symbolic Computing Aided Design of Observers by Jacobian and Extended Linearization, Z. angew. Math. Mech., 76, Suppl. 3, 5510552, 1996.Google Scholar
  23. [23]
    Sira-Ramírez, H., Nonlinear Control by Extended Linearization, Cuadernos de Control, Volume 2-94, Postgrado de Control, Facultad de Ingenieria, Universidad de Los Andes, Mérida, 1994. (In Spanish)Google Scholar
  24. [24]
    Svensson, T., Nonlinear Control Systems Analysis Using Computer Algebra, Proc. American Control Conference, 3084–3088, American Automatic Control Council, San Francisco, 1993.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Jesús Rodríguez-Millán
    • 1
  • José Yépez
    • 1
  • Bokor Jozsef
    • 2
  1. 1.Facultad de Ingeniería - Dept. Sistemas de ControlUniversidad de Los AndesMéridaVenezuela
  2. 2.SZTAKI, Control and Systems LaboratoryHungarian Academy of SciencesBudapestHungary

Personalised recommendations