Extending constraint satisfaction problem solving in structural design

  • Qi Guan
  • Gerhard Friedrich
Euzzy Logic and Control
Part of the Lecture Notes in Computer Science book series (LNCS, volume 604)


In this article we address the problem of constraint satisfaction in structural design and present a theory of fuzzy constraint satisfaction (FCSP). Constraints based on fuzzy relations can be either hard and soft. Using fuzzy constraint satisfaction we are able to reason about the degree a constraint is satisfied, thus avoiding a static partition into hard and soft constraints as traditionally used. Various functions and comparators are defined for searching the best solution. We exploit object-oriented programming methods to implement FCSP for structural design.

Key words

Fuzzy set Constraint satisfaction Structural design 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Alois Haselböck, Constraint Satisfaction Problems — Ein Überblick über Verfahren und Anwendungen. DBAI-CSP-ST 91/1, Technical University of Vienna, 1991Google Scholar
  2. [2]
    Ken Satoh. Formalizing Soft Constraints by Interpretation Ordering, In Proceeding of 9th European Conference on Artificial Intelligence, pages 585–590, Stockholm, Sweden, August 1990Google Scholar
  3. [3]
    A. Borning, M. Maher, A. Marindale, and M. Wilson. Constraint Hierarchies and Logic Programming. In Proceedings of the International Conference on Logic Programming, pages 149–164, Lisbon, Portugal, June 1989.Google Scholar
  4. [4]
    Bjorn N. Freeman-Benson, John Maloney, and Alan Borning. An Incremental Constraint Solver. Communications of ACM, 33(1):54–63, 1990.CrossRefGoogle Scholar
  5. [5]
    Eugene C. Freuder. Partial Constraint Satisfaction. In Proceedings of the International Joint Conference on Artificial Intelligence, Pages 278–283, Detroit Michigan USA, August 1989. Morgan kaufmann Publishers, Inc.Google Scholar
  6. [6]
    Alber Haag. Ein Beitrag zur praktischen Handhabung von Planungs-und Konfigurierungsaufgaben. Arbeitspapiere der GMD, 388:83–105, 1989.Google Scholar
  7. [7]
    Takanori Yokoyama. An Object-Oriented and Constraint-Based Knowledge Representation System for Design Object Modeling. In Proceedings TOOLS, Pages 156–152, 1990.Google Scholar
  8. [8]
    Kefeng Hua, Boi Faltings, and Djamila Haround. Dynamic Constraint Satisfaction in a Bridge Design System. In Proceedings of international Workshop on Expert Systems in Engineering Principles and Application. Pages 217–232, Vienna Austria, September, 1990. Springer-Verlag.Google Scholar
  9. [9]
    Lin Shaopei, Gu Xiuling, Guan Qi, and G.K. Mikroundis. On Development of Expert System for Steel Structural Design. In Proceedings of the 12-th World Congress on Mathematics and Computer in Simulation. Pages 447–449, Paris, July, 1988.Google Scholar
  10. [10]
    Ronald R. Yager. The Representation of Fuzzy Relational Production Rules. In Journal of Applied Intelligence. 1. Pages 35–42, 1991.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Qi Guan
    • 1
  • Gerhard Friedrich
    • 1
  1. 1.Christian-Doppler Labor für Expertensysteme Institut für InformationssystemeTechnische Universität WienViennaAustria

Personalised recommendations