Advertisement

Adiabatic phase changes, fast and slow

I - Continuum Mechanics d - General theory
  • 263 Downloads
Part of the Lecture Notes in Physics book series (LNP, volume 344)

Abstract

Many phase changes proceed spontaneously from a metastable state, without significant heat transfert. Diverse examples are given, including vapor explosion, liquefaction shocks, compression to a state near the thermodynamic critical point, shock splitting, liquid-evaporation waves and others. The phase changes discussed are limited to liquid-vapor systems. Homogeneous and heterogeneous nucleation are briefly discussed.

Keywords

Vortex Ring Wilson Line Shock Mach Number Isentropic Compression Spinodal Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ABBOTT, M.M. 1973 Cubic equations of state. AIChE. J. 19, 596–601.Google Scholar
  2. BETHE, H.A. 1942 The theory of shock waves for an arbitrary equation of state. Rep. 545, p. 57. Office of Scientific Research and Development, Washington.Google Scholar
  3. Bier, K., Ehrler, F. Kissau, G., Lippig, F. & Schorsch, R. 1977 Homogene Spontankondensation in expandierenden Dampfstrahlen des Kältemittels R 22 bei hohen normierdten Drüken. Forsch. Ing. Wes. 43, 165–175 (V.D.I.).Google Scholar
  4. Bier, K., Ehrler, F. & Theis, G. 1984 Comparison of spontaneous condensation in supersaturated nozzle flow of different refrigerants. ORC-HP Technology, VDI Bericht 539, pp. 749–768. VDI Verlag, Düsseldorf.Google Scholar
  5. Borisov, A.A., Borisov, Al. A. & Kutateladze, S.S. 1983 Rarefaction shock wave near the critical liquid-vapour point. J. Fluid Mech. 126, 59–73.Google Scholar
  6. CRAVES, H. 1980. Verdampfungswellen in retrograden Fluessigkeiten. Diplomarbeit, Georg-August-Universitaet, Goettingen.Google Scholar
  7. CRAVES, H. 1984 Phasenubergaenge und Wellen bei der Entspannung von Fluiden hoher spezifischer Waerme. Dissertation, Georg-August Universitaet, Goettingen.Google Scholar
  8. Chen, G., Thompson, P.A. & Bursik, J.W. 1986 Soundspeed measurements in vapor-liquid mixtures behind shock waves. Experiments in Fluids. 4, 279–282.Google Scholar
  9. CRAMER, M.S. & Kluwich, A. 1984 On the propagation of waves exhibiting both positive and negative nonlinearity. J. Fluid Mech. 142, 9–37.Google Scholar
  10. CRAMER, M.S. Shock splitting in single-phase gases. To appear, J. Fluid Mech. Google Scholar
  11. DETTLEFF, G., Meier, G.E.A., SPECKMANN, H.-D., THOMPSON, P.A. & YOON, C. 1982 Experiments in shock liquefaction. In Proc. 13th Intl Symp. on Shock Tubes and Waves (ed. C.E. Trainor & J.G. Hall), pp. 616–623. State University of New York Press, Albany.Google Scholar
  12. DETTLEFF, G., THOMPSON, P.A., MEIER, G.E.A. & SPECKMANN, H.-D. 1979 An experimental study of liquefaction shock waves. J. Fluid Mech. 95, 279–304.Google Scholar
  13. DOBBINS, R.A. 1983 A theory of the Wilson line for steam at low pressures. Trans. ASME I J. Fluids Engng 105, 414–422.Google Scholar
  14. FOWLES, G.R. & HOUWING, A.F.P. 1984 Instability of shock and detonation waves. Phys. Fluids 27, 1982–1990.Google Scholar
  15. FROST, DAVID L. & CICCIARELLI, G. 1987 Dynamics of explosive interactions between multiple drops of tin and water. Proc. 11th Int. Colloquin on Dynamics of Explosions and Reactive Systems, Warsaw.Google Scholar
  16. GARLAND; C.W. & WILLIAMS, R.D. 1974 Low-frequency sound velocity near the critical point of xenon. Phys. Rev. A. 10, 1328–1332.Google Scholar
  17. GUST, W.H.&YOUNG, D.A. 1979 High Pressure Science and Technology (ed. K. D. Timmerhaus & M. S. Barber), vol. I, pp. 944–852. Plenum.Google Scholar
  18. HERMANN, R. 1942 Der Kondensationsstoss in Uberschall-Windkanal düsen. Luftfahrtforschung 19, 201–209.Google Scholar
  19. HOBBS, D.E. 1983 Avirial equation of state utilizing the principle of corresponding states Dissertation, Rensselaer Polytechnic Institute.Google Scholar
  20. KLING GEORGE W., MICHAEL A. CLARK, HARRY R. COMPTON, JOSEPH D. DEVINE, WILLIAM C. EVANS, ALAN M. HUMPHREY, EDWARD J. KOENIGSBERG, JOHN P. LOCKWOOD, MICHELE L. TUTTLE, GLENN. WAGNER 1987 The 1986 Lake Nyos gas disaster in Cameroon, West Africa. Science 236, 169–175.Google Scholar
  21. KONTORO VICH, V.M. 1957 Concerning the stability of shock waves. Sov. Phys: Tech. Phys. 6, 1179–1181.Google Scholar
  22. KUTATELADZE, S.S., NAKORYAKOV, V.E. & Borisov, A.A. 1987 Rarefaction waves in liquid and gas-liquid media. In Annual Rev. Fluid Mech. 19, 577–600Google Scholar
  23. LANDAU, L.D. & Lifshitz, E. M. 1959 Fluid Mechanics, p. 496. Pergamon.Google Scholar
  24. McQUEEN, R. G. & MARSH, S. P. 1968 Hugoniots of graphites of various initial densities and the equation of state of carbon. In Behavior of Dense Media under High Dynamic Pressures, pp. 207–216. Gordon and Breach.Google Scholar
  25. MEIER, G.E.A. 1987 Zur Realgasdynamik der Fluide hoher spezifischer Wärme. Habilitationsschrift (Physik), Georg-August-Universität, Göttingen.Google Scholar
  26. MENIKOFF, RALPH&PLOHR, BRADLEY 1988 Riemann problem for fluid flow of real materials. Los Alamos National Laboratory Report LA-UR-88-49.Google Scholar
  27. MOLDOVER, M.R. & GAMMON, R.W. 1983 Conceptual design of low-gravity experiments on phase transition and critical phenomena in fluids. NASA Contractor's Report CR 174637.Google Scholar
  28. OSWATISCH, K. 1942Kondensationserscheinungen in Uberschalldüsen. ZAMM 22, 1–14.Google Scholar
  29. PETERS, F. 1987 Condensation of supersaturated water vapor at low temperatures in a shock tube. J. Phys. Chem. 91, 2487–2489.Google Scholar
  30. PLANCK, M. 1903 Treatise on Thermodynamics, pp. 150–152. Longmans-GreenGoogle Scholar
  31. PRANDTL, LUDWIG 1940 Remarks. Atti del V Convegno Volta p 196–197; 558. Reale Accademia D'Italia, Roma.Google Scholar
  32. REIN, MARTIN 1987 Numerische Untersuchung der Dynamik heterogener StoBKavitation. Dissertation, Georg August Universitaet, Goettingen.Google Scholar
  33. SHEPHERD, J. E. & STURTEVANT, B. 1983 Rapid evaporation at the superheat limit. J. Fluid Mech. 121, 379–402.Google Scholar
  34. SIMONEAU, ROBERT J. 1981 Depressurization and two-phase flow of water containing high levels of dissolved nitrogen gas. NASA Technical Paper 1839, Lewis Research Center, Cleveland, Ohio.Google Scholar
  35. SKEWS, B.W. 1967 The perturbed region behind a diffracting shock wave. J. Fluid Mech. 29, 705–719.Google Scholar
  36. SKRIGOV, V.P. 1974 Metastable Liquids. John Wiley, New-York.Google Scholar
  37. SLEMROD, M. 1983 Admissibility criteria for propagating phas boundaries in a van der Waals fluid. Arch. Rat. Mech. Anal. 81, 301–315.Google Scholar
  38. SLEMROD, M. 1984 Dynamic phase transitions in a van der Waals fluid. J. Diffl Equat. 52, 1–23.Google Scholar
  39. SNECK, H.JAMES, Thompson, P.A., Hand, B.E., Meyer, B.R. & Ping, Chen 1985 Modeling of the champagne effect, in Fundamental Aspects of Gas-Liquid Flows Amer. Soc. Mech. Engrs. FED-29.Google Scholar
  40. STODOLA, A. 1924 Dampf-und Gasturbinen Julius Springer Verlag, 6th Ed. (p1).Google Scholar
  41. THOMPSON, P.A., Carofano, G.C. & Kim, Y.-G. 1986 Shock waves and phase changes in a large-heat-capacity fluid emerging from a tube. J. Fluid Mech. 166, 57–92.Google Scholar
  42. THOMPSON, P.A., CHAVES, H., Meier, G.E.A., Kim, Y.-G & Speckmann, H. D. 1987 Wave splitting in a fluid of large heat capacity. J. Fluid Mech. 185, 385–414.Google Scholar
  43. THOMPSON, P.A., Kim, Y.-G., Yoon, C.J. & Chan, Y. 1988 Nonequilibrium, near-critical states in shock-tube experiments. Proc.16th Intl. Symp. Shock Tubes and Waves, Aachen (ed. Hans Grönig), pp. 343–349. VCH Verlag, Weinheim, FRG.Google Scholar
  44. VAN DER WAALS, J.D. 1908 Lehrbuch der Thermodynamik. Bearbeitet von Ph. Kohnstamm, Maas und Van Suchtelen, Leipzig.Google Scholar
  45. WEGENER, P.P. 1987 Nucleation of nitrogen: Experiment and theory. J. Phys. Chem. 91 2479–2481Google Scholar
  46. WEGENER, P.P. & MACK, L.M. 1958 Condensation in supersonic and hypersonic wind tunnels. In Advances in Applied Mechanics, vol. 5 (ed. H. L. Dryden & Th. von Karman), pp. 307–447.Academic.Google Scholar
  47. WEGENER, P.P. & MIRABEL, PHILIPPE 1987 Homogeneous nucleation in supersaturated vapors. Natuwissenschaften 74, 111–119.Google Scholar
  48. WEGENER, P.P. & WU, B.J.C. 1977 Gasdynamics dand homogeneous nucleation. Adv. Colloid Interface Sci. 7, 325–417.Google Scholar
  49. ZAUNER, E. 1988 Transkritische Expansionsströmungen. Lecture presented at the GAMM Annual Meeting, Sitzung 60, Wien.Google Scholar
  50. ZEL'DOVICH, YA. B. & RAIZER, YU. P. 1967 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Vol. 2 (ed. W.D.Hayes & R.F.Probstein), pp. 750–756. Academic.Google Scholar
  51. ZEL'DOVICH, YA. B., “The reestablishment of the van der Waals critical point in fast processes”, Soviet Physics JETP, Vol.53, p.1101, 1981.Google Scholar

Additional References for Table 1

  1. VAPOUR EXPLOSION (1861) Dufour, L. C.R. Acad. Sci. Paris 53, 846.Google Scholar
  2. CAVITATION (1894) Reynolds, Osborne, Papers on Mechanical and Physical Subjects, Volume 2, 63, 578–587. Cambridge Univ. Press, 1901.Google Scholar
  3. SUPERSATURATION OF WATER VAPOUR Wilson, C.T.R. Trans. Roy. Soc. A 189, 265–307. (1897)Google Scholar
  4. HELMHOLTZ, R. Von, Ann. Phys. Chem. 27, 508. (1886)Google Scholar
  5. PREDICTION OF VAPOUR-PHASE RAREFACTION SHOCK (1946) Zel'dovich, Ya. B. Zh.Eksp. Teor. Fiz 4, 363–364.Google Scholar
  6. NEGATIVE LIQUID PRESSURE (1950) Briggs, L. J. J. Appl. Phys. 21, 721.Google Scholar
  7. LIQUID-EVAPORATION WAVE (1974) Grolmes, M.A. & Fauske, H.K. Proc. 5th Int. Conf. on Pressure Surges, BHRA, London. (Column separation)Google Scholar
  8. COMPLETE AND PARTIAL LIQUEFACTION SHOCKS (1979) Dettleff, G., Thompson, P.A., Meier, G.E.A. & Speckmann, H.D. J. Fluid Mech. 126, 59–73.Google Scholar
  9. SHOCK SPLITTING (1983) Thompson, P.A. & Kim, Y.-g. Phys Fluids 26, 3211–3215. See also Dettleff, et al. 1982.Google Scholar
  10. CHAPMAN-JOUGUET LIQUD-EVAPORATION WAVE (1984) Chaves, H. Dissertation, Göttingen. See also Thompson, et al 1987.Google Scholar
  11. MIXTURE-EVAPORATION RAREFACTION SHOCK (1986) Thompson, P.A., Carofano, G.C. & Kim, Y-G. J. Fluid Mech. 156, 57–92.Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  1. 1.Max-Plank-Institute fur StrömungsforschungGöttingenGermany

Personalised recommendations