Advertisement

Invariance properties of inviscid fluids of grade n

I - Continuum Mechanics c - Fluids
Part of the Lecture Notes in Physics book series (LNP, volume 344)

Abstract

Fluids of grade n are continuous models for dynamic changes of phase which avoid the surfaces of discontinuity representing the capillary layers in liquid-vapour interfaces. We recall the thermodynamic form of the equation of motion for inviscid fluids of grade n [1]. First integrals and circulation theorems are deduced and a general classification of flows is given.

Keywords

Velocity Field Heat Supply Perfect Fluid Potential Equation Form Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    GOUIN, H., Comptes rendus Acad. Sci. Paris, 305, II (1987) 833.Google Scholar
  2. [2]
    BUPARRERE, M., and PRUD'HOMME, R., Equations fondamentales de l'aérothermochimie, Masson, Paris (1973)Google Scholar
  3. [3]
    KORTEWEG, D.J., Archives Néerlandaises, 28, (1901) 1.Google Scholar
  4. [4]
    SERRIN, J., Editor, New Perspectives in Thermodynamics, Springer, New York (1986).Google Scholar
  5. [5]
    SERRIN, J., Encyclopedia of Physics VIII/1, Springer, Berlin (1959).Google Scholar
  6. [6]
    CASAL, P., J. de mécanique, Paris, 5, no 2 (1966) 149.Google Scholar
  7. [7]
    GOUIN, H., J. de mécanique, Paris, 20, no 2 (1981) 273.Google Scholar
  8. [8]
    CASAL, P., and GOUIN, H., Sur les interfaces liquide-vapeur non-isothermes, J. de Mécanique Théorique et Appliquée, Paris, 7, no6 (1988).Google Scholar
  9. [9]
    CASAL, P., and GOUIN, H., A representation of liquid-vapour interfaces by using fluids of second grade, Annales de Physique, Paris, to appear (1988).Google Scholar
  10. [10]
    SELIGER, R.L., and WHITHAM, G.B., Proc. Roy. Soc. of London, A, 305, (1968) 1.Google Scholar
  11. [11]
    GOUIN, H., Research Notes in Mathematics, 46, Pitman, London (1981) 128.Google Scholar
  12. [12]
    CASAL, P., and GOUIN, H., Comptes rendus Acad. Sci. Paris, 306, II (1988) 99.Google Scholar
  13. [13]
    CUBISOL-GOUIN, F., Contribution à une étude thermomécanique des milieux continus, thesis, Université d'Aix-Marseille 3 (1987).Google Scholar
  14. [14]
    TRUESDELL, C., and TOUPIN, R.A., The Classical Field Theories, Encyclopedia of Physics III/1, Springer, Berlin (1960).Google Scholar
  15. [15]
    TRUESDELL, C., and NOLL, W., Encyclopedia of Physics III/3, Springer, Berlin (1965).Google Scholar
  16. [16]
    LAMB, H., Hydrodynamics, Dover Publications, New York (1972).Google Scholar
  17. [17]
    LANDAU, L., and LIFCHITZ,E., Fluid Mechanics, Mir, Moscow (1971).Google Scholar
  18. [18]
    GOLDSWORTHY, F.A., J. Fluid Mech., 5, (1959) 164.Google Scholar
  19. [19]
    STURTEVANT, B., and SLACHMUYDERS, E., Phys. Fluids, 7, (1964) 1201.Google Scholar
  20. [20]
    MANDEL, J., Cours de mécanique des milieux continus, Gauthier-Villars, Paris (1966) 135.Google Scholar
  21. [21]
    GOUIN, H., Mech. Res. Comm., 3, (1976) 151.Google Scholar
  22. [22]
    MOREAU, J.J., Sur les intégrales premières de la dynamique d'un fluide parfait barotrope et le théorème de Helmholtz-Kelvin, Séminaire d'analyse convexe, 3, Montpellier (1977).Google Scholar
  23. [23]
    CARTAN, E., Leçons sur les invariants intégraux, Hermann, Paris (1971).Google Scholar
  24. [24]
    GOUIN, H., Contribution à une étude géométrique et variationnelle des milieux continus, Thesis, Université de Provence (1978).Google Scholar
  25. [25]
    VILLAT, H., Leçons sur la théorie des tourbillons, Masson, Paris (1930).Google Scholar
  26. [26]
    HAMEL, G., Sitzgsber. preus. Akad. Wiss. Phys. Math. Ki. (1937) 5.Google Scholar
  27. [27]
    Germain, P., Cours de mécanique des milieux continus, Masson, Paris (1973).Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  1. 1.Université de ProvenceMarseille Cedex 3France
  2. 2.Faculté des Sciences et TechniquesMarseille Cedex 13France

Personalised recommendations