Advertisement

Theory of diffusionless phase transitions

I - Continuum Mechanics b - Elastic crystals
Part of the Lecture Notes in Physics book series (LNP, volume 344)

Keywords

Equilibrium Configuration Young Measure Martensite Variant Material Instability Elastic Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ball, J. M. 1976 Constitutive equations and existence theorems in nonlinear elastostatics, Heriot-Watt Symp., I, (R. Knops,ed.) Pitman, 187–241Google Scholar
  2. 2.
    Ball, J. M. 1980 Strict convexity, strong ellipticity, and regularity in the calculus of variations, Math Proc Camb Phil Soc, 87, 501–513Google Scholar
  3. 3.
    Ball, J. M. 1984 Singular minimizers and their significance in elasticity, Phase Transformations and Material Instabilities in Solids, (Gurtin, M., ed) Academic Press, 1–20Google Scholar
  4. 4.
    Ball, J. M. 1989 Sets of gradients with no rank-one connections (to appear)Google Scholar
  5. 5.
    Ball, J. M. 1989 A version of the fundamental theorem for Young measures, these proceedingsGoogle Scholar
  6. 6.
    Ball, J. M. and James, R. 1987 Fine phase mixtures as minimizers of energy, Arch. Rat. Mech. Anal.,100, 15–52Google Scholar
  7. 7.
    Ball, J. M. and James, R. 1989 Proposed experimental tests of a theory of fine microstructure and the two well problem (to appear)Google Scholar
  8. 8.
    Ball, J. M. and Murat, F. 1984 W1,p — quasiconvexity and variational problems for multiple integrals, J. Fnal Anal, 58,225–253Google Scholar
  9. 9.
    Ball, J. M., and Knowles, G. 1986 Liapunov functions for thermomechanics with spatially varying boundary temperatures, Arch. Rat. mech. Anal., 92, 193–204Google Scholar
  10. 10.
    Basinski, Z. S. and Christian, J. W. 1954 Experiments on the martensitic transformations in single crystals of indium-thallium alloys, Acta Met. 2, 149–166Google Scholar
  11. 11.
    Battacharya, K 1989 Thesis, University of MinnesotaGoogle Scholar
  12. 12.
    Burkart, M. W. and Read, T. A. 1953 Diffusionless phase change in the indium-thallium system, J. of Metals, 5, 1516–1524Google Scholar
  13. 13.
    Chipot, M. and Evans, L. C. 1986 Linearisation at infinity and Lipschitz estimates for certain problems in the calculus of variations, Proc. R. Soc. Edin., 102A, 291–303Google Scholar
  14. 14.
    Chipot, M. and Kinderlehrer, D. 1988 Equilibrium configurations of crystals, Arch. Rat. Mech. Anal. 103,237–277Google Scholar
  15. 15.
    Chipot, M., Kinderlehrer, D., and Vergara-Caffarelli, G. 1986 Smoothness of linear laminates, Arch. Rat. Mech. and Anal. 96, 81–96Google Scholar
  16. 16.
    Christian, J. W. 1975 The theory of transformations in metals and alloys, PergamonGoogle Scholar
  17. 17.
    Collins, C. and Luskin, M. 1989 The computation of the austenitic-martensitic phase transition (these proceedings)Google Scholar
  18. 18.
    Dacorogna, B. 1982 Weak continuity and weak lower semicontinuity of nonlinear functionals, Springer Lecture Notes 922 (1982)Google Scholar
  19. 19.
    Dacorogna, B. and Fusco, N. 1985 Semi-continuité des fonctionnelles avec contraintes du type “det grad u > 0”, Boll. U M I, 6, 179–189Google Scholar
  20. 20.
    Eftis, J., MacDonald, D. E., and Arkilic, G. M. 1971 Theoretical calculation of the pressure variation of second-order elastic coefficients for alkali metals, Mater. Sci. Eng. 7, 141–150Google Scholar
  21. 21.
    Ericksen, J. L. 1973 Loading devices and stability of equilibrium, in Nonlinear Elasticity, Academic Press, 161–173Google Scholar
  22. 22.
    Ericksen, J. L. 1977 Special topics in elastostatics, Adv. in appl. mechanics, (C.-S. Yih, ed.) Academic Press 7, 189–243Google Scholar
  23. 23.
    Ericksen, J. L. 1979 On the symmetry of deformable crystals, Arch. Rat. Mech. Anal. 72, 1–13Google Scholar
  24. 24.
    Ericksen, J. L. 1980 Some phase transitions in crystals, Arch. Rat. Mech. Anal. 73, 99–124Google Scholar
  25. 25.
    Ericksen, J. L. 1981 Some simpler cases of the Gibbs phenomenon for thermoelastic solids, J.of thermal stresses, 4, 13–30Google Scholar
  26. 26.
    Ericksen, J. L. 1983 Ill posed problems in thermoelasticity theory, Systems of Nonlinear Partial Differential Equations, (Ball, J., ed) D. Reidel, 71–95Google Scholar
  27. 27.
    Ericksen, J. L. 1984 The Cauchy and Born hypotheses for crystals, Phase Transformations and Material Instabilities in Solids, (Gurtin, M., ed) Academic Press, 61–78Google Scholar
  28. 28.
    Ericksen, J. L. 1986 Stable equilibrium configurations of elastic crystals, Arch. Rat. Mech. Anal. 94, 1–14Google Scholar
  29. 29.
    Ericksen, J. L. 1987 Twinning of crystals I, Metastability and Incompletely Posed Problems, IMA Vol. Math. Appl. 3,(Antman, S., Ericksen, J.L., Kinderlehrer, D., Müller, I.,eds) Springer, 77–96Google Scholar
  30. 30.
    Ericksen, J. L. 1988 Some constrained elastic crystals, Proc. Symp. Material instabilities in continuum mechanics, Heriot-Watt (Ball, J. M. ed.) Oxford, 119–136Google Scholar
  31. 31.
    Fonseca, I. 1985 Variational methods for elastic crystals, Arch. Rat. Mech. Anal., 97, 189–220Google Scholar
  32. 32.
    Fonseca, I. 1988 The lower quasiconvex envelope of the stored energy function for an elastic crystal, J. Math. pures et appl, 67, 175–195Google Scholar
  33. 33.
    Fonseca, I. 1989 Interfacial energy and the Maxwell rule, Arch. Rat. Mech. Anal.Google Scholar
  34. 34.
    Gibbs, J. W. 1961 On the equilibrium of heterogeneous substances, The Scientific Papers of J. Willard Gibbs, Vol 1., DoverGoogle Scholar
  35. 35.
    Gurtin, M. E. 1983 Two phase deformations of elastic solids, Arch. Rat. Mech. Anal., 84, 1–29Google Scholar
  36. 36.
    IGurtin, M. E. 1986 On phase transitions with bulk, interfacial, and boundary energy, Arch. Rat. Mech. Anal., 96, 243–264Google Scholar
  37. 37.
    Herring, C. 1951 Some theorems on the free energy of crystal surfaces, Phys. Rev. 82, 87–93Google Scholar
  38. 38.
    James, R. D. 1986 Displacive phase transformations in solids, J. Mech. Phys. Solids, 34, 359–394Google Scholar
  39. 39.
    James, R. D. 1986 Phase transformations and non-elliptic free energy, New Perspectives in Thermodynamics (Serrin, J., ed) Springer, 223–239Google Scholar
  40. 40.
    James, R. D. 1987 The stability and metastability of quartz, Metastability and Incompletely Posed Problems, IMA Vol. Math. Appl. 3,(Antman, S., Ericksen, J.L., Kinderlehrer, D., Müller, I.,eds) Springer, 147–176Google Scholar
  41. 41.
    James, R. D. 1988 Microstructure and weak convergence, Proc. Symp. Material instabilities in continuum mechanics, Heriot-Watt (Ball, J. M. ed.) Oxford, 175–196Google Scholar
  42. 42.
    Kinderlehrer, D. 1987 Twinning in crystals II, Metastability and Incompletely Posed Problems, IMA Vol. Math. Appl. 3,(Antman, S., Ericksen, J.L., Kinderlehrer, D., Müller, I.,eds) Springer, 185–211Google Scholar
  43. 43.
    Kinderlehrer, D. 1988 Remarks about the equilibrium configurations of crystals, Proc. Symp. Material instabilities in continuum mechanics, Heriot-Watt (Ball, J. M. ed.) Oxford, 217–242Google Scholar
  44. 44.
    Kinderlehrer, D. and Vergara-Caffarelli, G. The relaxation of functionals with surface energies, to appearGoogle Scholar
  45. 45.
    Kohn, R. V. and Strang, G. 1987 Optimal design and relaxation of variational problems, I, CPAM 34, 113–137Google Scholar
  46. 46.
    Kohn, R. V. and Strang, G. 1987 Optimal design and relaxation of variational problems, II,CPAM 34, 139–182Google Scholar
  47. 47.
    Kohn, R. V. and Strang,G. 1987 Optimal design and relaxation of variational problems, III,CPAM 34, 353–377Google Scholar
  48. 48.
    Marcellini, P. 1986 On the definition and the lower semicontinuity of certain quasiconvex integrals, Ann. Inst. H. Poincaré; Analyse non linéaire, 3, 391–409Google Scholar
  49. 49.
    Mascolo, E. and Schianchi, R. 1983 Existence theorems for non convex problems, J. Math pures et appl, 62,(1983), 349–359Google Scholar
  50. 50.
    Matos, J. 1989 Thesis, University of MinnesotaGoogle Scholar
  51. 51.
    Morrey, C. B., Jr. 1966 Multiple Integrals in the Calculus of Variations, SpringerGoogle Scholar
  52. 52.
    Müller, I. 1979 A model for a body with shape memory, Arch. Rat. Mech. Anal., 70, 61–77Google Scholar
  53. 53.
    Müller, I. and Wilmanski, K. 1980 A model for phase transition in pseudoelastic bodies, Il Nuovo Cim., 57B, 283–318Google Scholar
  54. 54.
    Parry, G. 1981 On phase transitions involving internal strain, Int. J. Solids Structures, 17, 361–378Google Scholar
  55. 55.
    Parry, G. On shear bands in unloaded crystals, to appearGoogle Scholar
  56. 56.
    Pedregal, P. Thesis, University of MinnesotaGoogle Scholar
  57. 57.
    Pego, R. 1985 Phase transitions in one dimensional nonlinear viscoelasticity: admissibility and stability, Arch. Rat. Meth. Anal. 97, 353–394Google Scholar
  58. 58.
    Pego, R. 1987 Phase transitions in one dimensional nonlinear viscoelasticity: admissibility and stability, Dynamical Problems in Continuum Physics, I M A Vol. Math. Appl. 4 (Bona, J., Dafermos, C., Ericksen, J. L., and Kinderlehrer,., eds)277–288Google Scholar
  59. 59.
    Pipkin, A. C. 1986 The relaxed energy density for isotropic elastic membranes, IMA J Appl Math, 36, 85–99Google Scholar
  60. 60.
    Pippard, A. B. 1957 The elements of classical thermodynamics, CambridgeGoogle Scholar
  61. 61.
    Pitteri, M. 1985 On v + 1 lattices, J. Elasticity, 15, 3–25Google Scholar
  62. 62.
    Pitteri, M. 1986 On type-2 twins in crystals, Int. J. Plasticity, 2, 99–106Google Scholar
  63. 63.
    Pitteri, M. 1987 A contribution to the description of natural states for elastic crystalline solids, Metastability and Incompletely Posed Problems, IMA Vol. Math. Appl. 3,(Antman, S., Ericksen, J.L., Kinderlehrer, D., Müller, L,eds) Springer, 295–310Google Scholar
  64. 64.
    Reshetnyak, Yu. G. 1967 Liouville's theorem on conformal mappings under minimal regularity assumptions, Siberian Math J., 8, 631–653Google Scholar
  65. 65.
    Reshetnyak, Yu. G. 1967 On the stability of conformal mappings in multidimensional spaces, Siberian Math J., 8, 69–85Google Scholar
  66. 66.
    Simpson, H. C. and Spector, S. J. 1987 On the sign of the second variation in finite elasticity, Arch. Rat. Meth. Anal. 98, 1–30Google Scholar
  67. 67.
    Slemrod, M. 1986 Interrelationships among mechanics, numerical analysis, compensated compactness, and oscillation theory, Oscillation Theory, Computation, and Methods of Compensated Compactness, I M A Vol. Math. Appl. 2, (Dafermos, C., Ericksen, J. L, 309–336., Kinderlehrer, D., and Slemrod, M. eds)Google Scholar
  68. 68.
    Tartar, L. 1979 Compensated compactness and applications to partial differential equations, Nonlinear analysis and mechanics: Heriot-Watt symp. IV, (Knops, R. J. ed) Pitman, (1979), 136–212Google Scholar
  69. 69.
    Tartar, L. 1983 The compensated compactness method applied to systems of conservation laws, Systems of nonlinear partial differential equations (Ball, J. M., ed) Riedel, 263–285Google Scholar
  70. 70.
    Tartar, L. 1984 Étude des oscillations dans les équations aux dérivées partielles nonlinéaires, Springer Lect. Notes Physics, 195, 384–412Google Scholar
  71. 71.
    Tisza, L. 1951 On the general theory of phase transformations in solids, (Smoluchowski, R., Mayer, J. E., and Weyl, W. A., eds) Wiley, 1–35Google Scholar
  72. 72.
    van Tendeloo, G., van Landuyt, J., and Amelinckx, S. 1976 The α-β phase transition in quartz and AlPo4 as studied by electron microscopy and diffraction, Phys. Stat. Sol., a33, 723–735Google Scholar
  73. 73.
    Wechsler, M. S., Lieberman, D. S., and Read, T. A. 1953 On the theory of the formation of martensite, Trans. AIME J. Metals, 197, 1503–1515Google Scholar
  74. 74.
    Young, L. C. 1969 Lectures on calculus of variations and optimal control theory, W.B. SaundersGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  1. 1.Department of Aerospace Engineering and MechanicsUniversity of MinnesotaMinneapolis
  2. 2.School of MathematicsUniversity of MinnesotaMinneapolis

Personalised recommendations