Coupled transverse-longitudinal solitons in elastic crystals

I - Continuum Mechanics b - Elastic crystals
Part of the Lecture Notes in Physics book series (LNP, volume 344)


Solitary Wave Shape Memory Alloy Transverse Displacement Longitudinal Displacement Dark Soliton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F. Falk, Ginzburg-Landau theory of static domain walls in shape memory alloys, Z. Phys. B-Condensed Matter 51 (1983), 177–185.Google Scholar
  2. [2]
    F. Falk, Ginzburg-Landau theory and solitary waves in shape memory alloys, Z. Phys. B-Condensed Matter 54 (1984), 159–167.Google Scholar
  3. [3]
    O.B. Gorbacheva and L.A. Ostrovsky, Non linear vector waves in a mechanical model of a molecular chain, Physica D8 (1983), 223–228.Google Scholar
  4. [4]
    S. Cadet, Transverse envelope solitons in an atomic chain, Phys. Lett. A 121 (1987), 77–82.Google Scholar
  5. [5]
    , Propagation and interactions of non linear shear waves in a discrete lattice, to appear in Wave Motion (1988).Google Scholar
  6. [6]
    Coupled transverse-longitudinal envelope modes in an atomic chain, J. Phys. C-Solid State Physics 20 (1987) L803–L811.Google Scholar
  7. [7]
    T. Kawahara, The derivative expansion method and non linear dispersive waves, J. Phys. Soc. Jpn. 35 (1973) 1537–1544.Google Scholar
  8. [8]
    N. Flytzanis, St. Pnevmatikos and M. Remoissenet, Kink, breather and asymmetric envelope or dark solitons in non linear chains: I Monoatomic chain, J. Phys. C — Solid State Physics 18 (1985) 4603–4629.Google Scholar
  9. [9]
    J. Satsuma and N. Yajima, Initial value problems of one dimensional self modulation of non linear waves in dispersive media, Progr. Theor. Phys. Suppl. 55 (1974), 284–306.Google Scholar
  10. [10]
    A.C. Scott, F.Y.F. Chu and D.W. McLaughlin, The soliton: a new concept in applied science, Proceedings of the IEEE 61 (1973), 1443–1483.Google Scholar
  11. [11]
    M. Oikawa and N. Yajima, A perturbation approach to non linear systems II Interaction of non linear modulated waves, J. Phys. Soc. Jpn. 37 (1974), 486–496.Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  1. 1.Laboratoire d'Optique du Réseau CristallinFaculté des SciencesDijonFrance

Personalised recommendations