Advertisement

Coexistence of tricubes in digital naive plane

  • J. Vittone
  • J. M. Chassery
Discrete Shapes and Planes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1347)

Abstract

Tricubes are considered as elementary 3D neighbours used to generate digital planes. We present some properties of these tricubes and discuss about their characterization and coexistence in a digital naive plane.

Key words

digital naive plane bicube tricube 

References

  1. [BF94]
    Ph. Borianne and J. Françon. Reversible polyhedrization of discrete volumes. In Proc. DCGI'4, pages 157–168, Grenoble,France, September 1994.Google Scholar
  2. [CM91]
    J.M. Chassery and A. Montanvert. Géométrie discrète en analyse d'images, page 456. Hermès, Paris, 1991.Google Scholar
  3. [DR95]
    I. Debled-Renesson. Etude et reconnaissance des droites et plans discrets. PhD thesis, University Louis Pasteur, Strasbourg, France, 1995.Google Scholar
  4. [DRR94]
    I. Debled-Renesson and J.P. Reveillès. An incremental algorithm for digital plane recognition. In Proc. DCGI'4, pages 207–222, Grenoble,France, September 1994.Google Scholar
  5. [Fra95]
    J. Françon. Arithmetic planes and combinatorial manifolds. In Proc. DCGI'5, pages 209–217, Clermont-Ferrand,France, September 1995.Google Scholar
  6. [Fra96a]
    J. Françon. On recent trends in discrete geometry in computer science. In Lecture Notes in Computer Science, volume 1176, pages 3–16. S. Miguet, A. Montanvert and S. Ubéda Eds, Springer, 1996.Google Scholar
  7. [Fra96b]
    J. Françon. Sur la topologie d'un plan arithmétique. In Theorical Computer Science, volume 156, pages 159–176. Elsevier, 1996.Google Scholar
  8. [FST96]
    J. Françon, J.M. Schramm, and M. Tajine. Recognizing arithmetic straight lines and planes. In Lecture Notes in Computer Science, volume 1176, pages 141–150. S. Miguet, A. Montanvert and S. Ubéda Eds, Springer, 1996.Google Scholar
  9. [Rev95]
    J.P. Reveillès. Combinatorial pieces in digital lines and planes. In Vision Geometry IV, volume 2573. SPIE, 1995.Google Scholar
  10. [Sch97]
    J.M. Schramm. Tricubes coplanaires. Technical report, University of Strasbourg, France, Fev. 1997.Google Scholar
  11. [SNW92]
    A. Saoudi, M. Nivat, and P.S.P. Wang(Eds.). Parallel image processing. In International journal of pattern recognition and artificial intelligence, volume 6. WSP, 1992.Google Scholar
  12. [Wan89]
    P.S.P. Wang(Ed.). Array grammars, patterns and recognizers. In International journal of pattern recognition and artificial intelligence, volume 3. WSP, 1989.Google Scholar
  13. [Wan92]
    P.S.P. Wang. Parallel image analysis: proceedings. In ICPIA'92, Lecture Notes in Computer Science, volume 654. A. Nakamura, M. Nivat, A. Saoudi, P.S.P. Wang and K. Inoue (Eds.), Springer, 1992.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • J. Vittone
    • 1
  • J. M. Chassery
    • 1
  1. 1.Laboratoire TIMC-IMAGInstitut Albert BonniotLa Tronche cedexFrance

Personalised recommendations