An optimal parallel algorithm for Gaussian elimination

  • Mounir Marrakchi
Late Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1124)


This paper presents the 2-steps graph which occurs in the parallelization of Gaussian elimination with partial pivoting. We compute the task deadlines and the lower bound of processors popt (n) for executing the task graph in minimal time (n is the size of the considered matrix). Finally, we present an optimal parallel algorithm with two processors.


Complexity analysis Gaussian elimination Optimal parallel algorithm 2-steps graph 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. G. Coffman Jr., P. J. Denning, Operating system theory, Prentice Hall, Englewood Cliffs, NJ, 1973Google Scholar
  2. [2]
    M. Cosnard, M. Marrakchi, Y. Robert, D. Trystram, Parallel Gaussian elimination on an MIMD computer. Parallel Computing 6 (1988), 275–296CrossRefGoogle Scholar
  3. [3]
    R. E. Lord, J. S. Kowalik, S. P. Kumar, Solving linear algebraic equations on an MIMD computer, J. ACM 30, 1, (1983), 103–117CrossRefGoogle Scholar
  4. [4]
    M. Veldhorst, Gaussian elimination with partial pivoting on an MIMD computer, Journal of parallel and distributed computing 6 (1989), 62–68CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Mounir Marrakchi
    • 1
  1. 1.Dépt. InformatiqueFaculté des SciencesSfaxTunisia

Personalised recommendations