An asymptotically optimal affine schedule on bounded convex polyhedric domains

  • Patrick Le Gouëslier d'Argence
Workshop 17 Scheduling and Load Balancing
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1124)


We address the scheduling problem for algorithms which can be described by a system of uniform recurrence equations, when the computation domain is a bounded convex polyhedron. We study an affine schedule and we show that it is asymptotically time-optimal. Moreover we study the difference between its makespan and the optimal one, and we show that, in a particular case, it is bounded by a logarithmic function of the domain size.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Backes, U. Schwiegeishohn et L. Thiele. Longest Path Problems On Periodic Graphs. Research report IBM, October 1991Google Scholar
  2. 2.
    A. Darte, L. Khachiyan, et Y. Robert. Linear Scheduling Is Nearly Optimal Parallel Processing Letters, 1(2): 73–81, 1991CrossRefGoogle Scholar
  3. 3.
    A. Darte et Y. Robert. Scheduling uniform loop nests. IEEE Trans. Parallel Distributed Systems, 5(8): 814–822, 1994CrossRefGoogle Scholar
  4. 4.
    A. Darte et F. Vivien. Automatic Parallelization Based On Multi-Dimensional Scheduling. research report LIP 94-24 Google Scholar
  5. 5.
    P. Feautrier. Some Efficient Solutions To The Affine Scheduling Problem, Part I: One-Dimensional Time. Int. J. Parallel Programming, 21(5): 313–348, October 1992.CrossRefGoogle Scholar
  6. 6.
    P. Feautrier. Some Efficient Solutions To The Affine Scheduling Problem, Part II: Multi-Dimensional Time. Int. J. Parallel Programming, 21(6): 389–420, December 1992.CrossRefGoogle Scholar
  7. 7.
    G. R. Gao, Q. Ning et V. Van Dongen. Software Pipelining For Nested Loops. ACADS Technical Memo 53, May 1993Google Scholar
  8. 8.
    R.M. Karp, R. E. Miller, et S. Winograd. The organization of computations for uniform recurrence equations. Journal of the Association for Computing Machinery, 14(3):563–590, July 1967Google Scholar
  9. 9.
    P. Le GouËslier d'Argence. Contribution à l'étude des problèmes d'ordonnancement cyclique multidimensionnels Thèse de doctorat de l'université Pierre et Marie Curie, 1995Google Scholar
  10. 10.
    A. Schrijver. Theory Of Linear And Integer Programming, Wiley, New york, 1986Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Patrick Le Gouëslier d'Argence
    • 1
  1. 1.LITP-IBP, easier 168Université Pierre et Marie CurieParis cedex 05France

Personalised recommendations