Basic linear algebra operations in SLI arithmetic

  • Michael A. Anuta
  • Daniel W. Lozier
  • Nicolas Schabanel
  • Peter R. Turner
Workshop 08+09+10 Parallel Image/Video Processing and Computer Arithmetic
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1124)


Symmetric level-index arithmetic was introduced to overcome recognized limitations of floating-point systems, most notably overflow and underflow. The original recursive algorithms for arithmetic operations are parallelizable to some extent, particularly when applied to extended sums or products. The main purpose of this paper is to present parallel SLI algorithms for arithmetic and basic linear algebra operations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. A. Anuta, D. W. Lozier, N. Schabanel, and P. R. Turner, Basic linear algebra operations in SLI arithmetic, Nat. Inst. Stand. and Tech. Report NISTIR 5811, March 1996, 15 pages.Google Scholar
  2. 2.
    M. A. Anuta, D. W. Lozier, and P. R. Turner, The MasPar MP-1 as a computer arithmetic laboratory, J. Res. Nat. Inst. Stand. and Tech. 101 (1996), 165–174.Google Scholar
  3. 3.
    C. W. Clenshaw, D. W. Lozier, F. W. J. Olver, and P. R. Turner, Generalized exponential and logarithmic functions, Comput. Math. Appl. 12B (1986), 1091–1101.CrossRefGoogle Scholar
  4. 4.
    C. W. Clenshaw and F. W. J. Olver, Beyond floating point, J. Assoc. Comput. Mach. 31 (1984), 319–328.MathSciNetGoogle Scholar
  5. 5.
    -, Level-index arithmetic operations, SIAM J. Numer. Anal. 24 (1987), 470–485.CrossRefGoogle Scholar
  6. 6.
    C. W. Clenshaw, F. W. J. Olver, and P. R. Turner, Level-index arithmetic: An introductory survey, Numerical Analysis and Parallel Processing (P. R. Turner, ed.), Springer-Verlag, 1989, pp. 95–168.Google Scholar
  7. 7.
    C. W. Clenshaw and P. R. Turner, The symmetric level-index system, IMA J. Numer. Anal. 8 (1988), 517–526.Google Scholar
  8. 8.
    G. H. Golub and C. F. van Loan, Matrix Computations, 2nd ed., Johns Hopkins University Press, Baltimore, MD, 1989.Google Scholar
  9. 9.
    D. W. Lozier and F. W. J. Olver, Closure and precision in level-index arithmetic, SIAM J. Numer. Anal. 27 (1990), 1295–1304.CrossRefGoogle Scholar
  10. 10.
    D. W. Lozier and P. R. Turner, Robust parallel computation in floating-point and SLI arithmetic, Computing 48 (1992), 239–257.CrossRefGoogle Scholar
  11. 11.
    -, Error-bounding in level-index computer arithmetic, Numerical Methods and Error Bounds (G. Alefeld and J. Herzberger, eds.), Akademie Verlag, Berlin, 1996, pp. 138–145.Google Scholar
  12. 12.
    N. Schabanel and P. R. Turner, Parallelization and parallel implementation on the MasPar of SLI arithmetic, Mathematics Department, U. S. Naval Academy, Annapolis, MD 21402, September 13, 1995.Google Scholar
  13. 13.
    P. R. Turner, A software implementation of SLI arithmetic, Proc. ARITH9, IEEE Computer Society Press, Washington, DC, 1989, pp. 18–24.Google Scholar
  14. 14.
    -, Implementation and analysis of extended SLI operations, Proc. ARITH10, IEEE Computer Society Press, Washington, DC, 1991, pp. 118–126.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Michael A. Anuta
    • 1
  • Daniel W. Lozier
    • 2
  • Nicolas Schabanel
    • 3
  • Peter R. Turner
    • 4
  1. 1.Cray Research Inc.CalvertonUSA
  2. 2.National Institute of Standards and TechnologyGaithersburgUSA
  3. 3.école Normale Supérieure de LyonLyonFrance
  4. 4.United States Naval AcademyAnnapolisUSA

Personalised recommendations