The bounded tree-width problem of context-free graph languages

  • R. Skodinis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1335)


We show that the following (equivalent) problems are P-complete:
  1. 1.

    Does a given confluent NCE graph grammar only generate graphs of bounded tree-width? and

  2. 2.

    is the graph language generated by a given confluent NCE graph grammar an HR language?


This settles the complexity of these important problems on graph grammars.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ALS91]
    S. Arnborg, J. Lagergren, D. Seese. Easy problems for tree-decomposable graphs. J. of Algorithms, 12:308–340, 1991.Google Scholar
  2. [AP89]
    S. Arnborg, A. Proskurowski. Linear time algorithms on graphs with bounded tree-width. LNCS, 317:105–119, 1989.Google Scholar
  3. [Bra87]
    F.J. Brandenburg. On partially ordered graph grammars. LNCS, 291: 99–111, 1987.Google Scholar
  4. [Bra91]
    F.J. Brandenburg. The equivalence of boundary and confluent graph grammars on graph languages of bounded degree. LNCS, 488:312–322, 1991.Google Scholar
  5. [Bod96]
    H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of small treewidth. In SIAM J. Computing, 25:1305–1317, 1996.Google Scholar
  6. [Cou87]
    B. Courcelle An axiomatic definition of context-free rewriting and its application to NLC graph grammars. Theoret. Compact. Sci., 55:141–181, 1987.Google Scholar
  7. [Cou90]
    B. Courcelle. The monadic second-order logic of graphs I: Recognizable sets of finite graphs. Inform. and Comput., 85:12–75, 1990.Google Scholar
  8. [Cou95]
    B. Courcelle Structural properties of context-free sets of graphs generated by vertex replacement. Inform. and Comput., 116:275–293, 1995.Google Scholar
  9. [CER93]
    B. Courcelle, J. Engelfriet, and G. Rozenberg. Handle-rewriting hypergraph grammars. J. Comput. System Sci., 46:218–270, 1993.Google Scholar
  10. [Eng89]
    J. Engelfriet. Context-free NCE graph grammars. LNCS, 380:148–161, 1989.Google Scholar
  11. [EH91]
    J. Engelfriet and L. M. Heyker. The string generating power of context-free hypergraph graph grammars. J. Comput. System Sci., 43:328–360, 1991.Google Scholar
  12. [EH94]
    J. Engelfriet and L. M. Heyker. Hypergraph languages of bounded degree. J. Comput. System Sci., 48:58–89, 1994.Google Scholar
  13. [EL89]
    J. Engelfriet and G. Leih. Linear graph grammars: Power and complexity. Inform. and Comput., 81:88–121, 1989.Google Scholar
  14. [ELW90]
    J. Engelfriet, G. Leih, and E. Welzl. Boundary graph grammars with dynamic edge relabeling. J. Comput. System Sci., 40:307–345, 1990.Google Scholar
  15. [ER90]
    J. Engelfriet, G. Rozenberg. A comparison of boundary graph grammars and context-free hypergraph grammars. Inform. and Comput., 84:163–206, 1990.Google Scholar
  16. [EKR91]
    H. Ehrig, H.J. Kreowski, and G. Rozenberg. Proceedings of Graph-Grammars and Their Application to Computer Science '90, Vol. 532 of LNCS. Springer-Verlag, 1991.Google Scholar
  17. [ENRR87]
    H. Ehrig, M. Nagl, A. Rosenfeld, and G. Rozenberg. Proceedings of Graph-Grammars and Their Application to Computer Science '86, Vol. 291 of LNCS. Springer-Verlag, 1987.Google Scholar
  18. [Hab92]
    A. Habel. Hyperedge Replacement: Grammars and Languages, Vol. 643 of LNCS, Springer-Verlag, 1992.Google Scholar
  19. [JR80a]
    D. Janssens and G. Rozenberg. On the structure of node label controlled graph languages. Inform. Sci., 20:191–216, 1980.Google Scholar
  20. [JR80b]
    D. Janssens and G. Rozenberg. Restrictions, extensions, and variations of NLC grammars. Inform. Sci., 20:217–244, 1980.Google Scholar
  21. [Kau85]
    M. Kaul. Syntaxanalyse von Graphen bei Präzedenz-Graphgrammatiken. Dissertation, Universität Osnabrück, Osnabrück, Germany, 1985.Google Scholar
  22. [Klo94]
    T. Kloks. Treewidth. Computations and Approximations. Vol. 842 of LNCS, Springer-Verlag, 1994.Google Scholar
  23. [Nag76]
    M. Nagl. Formal languages of labelled graphs. Computing 16:113–137, 1976.Google Scholar
  24. [Nag80]
    M. Nagl. A tutorial and bibliographical survey of graph grammars. LNCS, 73:70–126, 1980.Google Scholar
  25. [SW95]
    K. Skodinis and E. Wanke. Emptiness problems of eNCE graph languages. J. Comput. System Sci., 51:472–485, 1995.Google Scholar
  26. [SW97]
    K. Skodinis and E. Wanke. The Bounded Degree Problem for eNCE Graph Grammars. Inform. and Comput., 135:15–35, 1997.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • R. Skodinis
    • 1
  1. 1.University of PassauPassauGermany

Personalised recommendations