Skip to main content

Laser-enhanced ionization spectrometry

  • Conference paper
  • First Online:
Analytical Chemistry Progress

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 126))

  • 109 Accesses

Abstract

Laser-enhanced ionization (LEI) is one of a family of laser-induced ionization techniques which have been exploited for analytical spectrometry. In LEI, a pulsed dye laser is used to promote analyte atoms to a bound excited state from which they are collisionally ionized in a flame. The resulting current is detected with electrodes and is a measure of the concentration of the absorbing species. LEI may proceed by photoexcitation (via one or more transitions) and thermal ionization or a combination of thermal excitation, photoexcitation, and thermal ionization. LEI detection limits are competitive with — and in many cases superior to — those obtained with other techniques of atomic spectrometry. This chapter will provide an introduction to LEI spectrometry and its capabilities. Signal production and collection will be discussed along with the more practical aspects of LEI spectrometry. The applications of LEI spectrometry will be reviewed and the future of LEI spectrometry will be assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7 References

  1. Green, R. B. et al.: J. Am. Chem. Soc. 98, 1517 (1976)

    Google Scholar 

  2. Travis, J. C. et al.: Anal. Chem. 54, 1006A (1982)

    Google Scholar 

  3. Young, J. P. et al.: ibid. 51, 1050A (1979)

    Google Scholar 

  4. Hurst, G. S. et al.: Rev. Mod. Phys. 51, 767 (1979)

    Article  Google Scholar 

  5. Hurst, G. S.: Anal. Chem. 53, 1448A (1983)

    Google Scholar 

  6. McClain, W. M.: Accts. Chem. Res. 7, 129 (1974)

    Article  Google Scholar 

  7. Kramer, S. D. et al.: Opt. Lett. 3, 16 (1978)

    Google Scholar 

  8. Whitaker, T. J. et al.: Chem. Phys. Lett. 79, 506 (1981)

    Article  Google Scholar 

  9. Mayo, S. et al.: Anal. Chem. 54, 553 (1982)

    Google Scholar 

  10. Fassett, J. D. et al.: ibid. 55, 765 (1983)

    Article  Google Scholar 

  11. Balykin, V. I. et al.: JETP Lett. 26, 357 (1977)

    Google Scholar 

  12. Gelbwachs, J. A. et al.: IEEE J. Quantum Electron, QE-14, 121 (1978)

    Article  Google Scholar 

  13. Wright, J. C.: Applications of lasers in analytical chemistry, in: Applications of Lasers to Chemical Problems (ed. Evans, T. R.): p. 105, New York, John Wiley & Sons 1982

    Google Scholar 

  14. van Dijk, C. A. et al.: Anal. Chem. 53, 1275 (1981)

    Google Scholar 

  15. Lin, K. C. et al.: Chem. Phys. Lett. 90, 111 (1982)

    Article  Google Scholar 

  16. Goldsmith, J. E. M.: Opt. Lett. 7, 437 (1982)

    Google Scholar 

  17. Goldsmith, J. E. M.: J. Chem. Phys. 78, 1610 (1983)

    Article  Google Scholar 

  18. Turk, G. C. et al.: Anal. Chem. 51, 2408 (1979)

    Article  Google Scholar 

  19. Turk, G. C. et al.: ibid. 54, 643 (1982)

    Google Scholar 

  20. Gonchakov, A. S. et al.: Anal. Lett. 12, 1037 (1979)

    Google Scholar 

  21. Zorov, N. B. et al.: J. Anal. Chem. 35, 1108 (1980)

    Google Scholar 

  22. Popescu, D. et al.: Phys. Rev. A9, 1182 (1974)

    Article  Google Scholar 

  23. Johnson, P. M. et al.: J. Chem. Phys. 62, 2500 (1975)

    Article  Google Scholar 

  24. Winefordner, J. D. et al.: Anal. Chem. 36, 1939 (1964)

    Article  Google Scholar 

  25. Travis, J. C. et al.: ibid. 51, 1516 (1979)

    Article  Google Scholar 

  26. Hollander, T. J.: AIAA J. 6, 385 (1968)

    Google Scholar 

  27. Smyth, K. C. et al.: What really does happen to electronically excited atoms in flames? in: Laser Probes for Combustion Chemistry (ed. Crosley, D. R.), ACS Symp. Ser. 134, p. 175, Washington, D.C., Amer. Chem. Soc. 1980

    Google Scholar 

  28. van Dijk, C. A. et al.: Combust. Flame 38, 37 (1980)

    Article  Google Scholar 

  29. Turk, G. C. et al.: Anal. Chem. 50, 817 (1978)

    Article  Google Scholar 

  30. Travis, J. C. et al.: ACS Symp. Ser., 85, 91 (1978)

    Google Scholar 

  31. Turk, G. C. et al.: Anal. Chem. 51, 1890 (1979)

    Article  Google Scholar 

  32. Green, R. B. et al.: Appl. Spectrosc. 34, 561 (1980)

    Article  Google Scholar 

  33. Havrilla, G. J. et al.: Anal. Chem. 52, 2376 (1980)

    Article  Google Scholar 

  34. Turk, G. C.: ibid. 53, 1187 (1981)

    Google Scholar 

  35. Nippoldt, M. A. et al.: ibid. 55, 554 (1983)

    Google Scholar 

  36. Lawton, J. et al.: Electrical Aspects of Combustion, a) p. 167, b) p. 320, c) p. 315, Oxford, Clarendon Press 1969

    Google Scholar 

  37. Schenck, P. K. et al.: J. Phys. Chem. 85, 2547 (1981)

    Article  Google Scholar 

  38. Havrilla, G. J. et al.: Anal. Chem. 54, 2566 (1982)

    Article  Google Scholar 

  39. Peters, R. A.; Green, R. B.: Abstracts, 185th Nat. Amer. Ähem. Soc. Meeting, Seattle, WA., March 24, 1983, No. 209

    Google Scholar 

  40. Hall, J. E. et al.: Anal. Chem. 55, 1811 (1983)

    Article  Google Scholar 

  41. Havrilla, G. J. et al.: Chem. Biomed. Environ. Instrum. 11, 273 (1981)

    Google Scholar 

  42. Vickers, G. H. et al.: ibid. 12, 289 (1983)

    Google Scholar 

  43. Trask, T. O. et al.: Anal. Chem. 53, 320 (1981)

    Google Scholar 

  44. Mallard, W. G. et al.: J. Chem. Phys. 76, 3483 (1982)

    Article  Google Scholar 

  45. Rockney, B. H. et al.: Chem. Phys. Lett. 87, 141 (1982)

    Article  Google Scholar 

  46. Smyth, K. C. et al.: J. Chem. Phys. 77, 1779 (1982)

    Article  Google Scholar 

  47. Schenck, P. K. et al.: ibid. 69, 5147 (1983)

    Article  Google Scholar 

  48. Travis, J. C. et al.: The optogalvanic effect, in: Lasers in Chemical Analysis (ed. Hieftje, G. M. et al.), p. 93, Clifton, N.J., Humana Press 1981

    Google Scholar 

  49. Travis, J. C.: J. Chem. Educ. 59, 909 (1983)

    Google Scholar 

  50. Turk, G. C.: Ph. D. Dissertation, Univers. of Maryland, 1978

    Google Scholar 

  51. Schenck, P. K. et al.: Opt. Engineer. 20, 522 (1981)

    Google Scholar 

  52. Mallard, W. G. et al.: Combust. Flame 44, 61 (1982)

    Article  Google Scholar 

  53. Smyth, K. C. et al.: Combust. Sci. Tech. 26, 35 (1981)

    Google Scholar 

  54. Schenck, P. K. et al.: Appl. Spectrosc. 36, 168 (1982)

    Article  Google Scholar 

  55. Trask, T. O. et al.: Spectrochim. Acta, 38 B, 503 (1983)

    Article  Google Scholar 

  56. Kingston, H. M. et al.: Anal. Chem. 50, 2064 (1978)

    Article  Google Scholar 

  57. Chaplygin, V. I. et al.: Spectrochim. Acta, 38B, Supplement, 386 (1983)

    Google Scholar 

  58. Turk, G. C. et al.: Laser-Enhanced Ionization Spectrometry for Trace Metal Analysis, in: Proc. Colloque Internat. CNRS No. 352, Editions de Physique, Aussois, France, June 20–25, 1983

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag

About this paper

Cite this paper

Green, R.B. (1984). Laser-enhanced ionization spectrometry. In: Analytical Chemistry Progress. Topics in Current Chemistry, vol 126. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0024396

Download citation

  • DOI: https://doi.org/10.1007/BFb0024396

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13596-8

  • Online ISBN: 978-3-540-39024-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics