Advertisement

QPN-Tool for the specification and analysis of hierarchically combined Queueing Petri nets

  • Falko Bause
  • Peter Buchholz
  • Peter Kemper
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 977)

Abstract

This article describes a new version of the QPN-Tool now supporting specification and analysis of hierarchically combined Queueing Petri nets (HQPNs). HQPNs are an extension of QPNs allowing the refinement of places by QPN subnets and/or queues. HQPNs can be analysed with respect to qualitative and quantitative aspects. Quantitative analysis is based on numerical Markov chain analysis. In contrast to conventional techniques the Markov chain underlying a HQPN is analysed by an approach exploiting the hierarchical structure of the model which results in a tensor representation of the generator matrix. This technique extends the size of solvable state spaces by one order of magnitude. Qualitative analysis of HQPNs relies on efficient analysis techniques based on Petri net theory. The new version of QPN-Tool implements the above analysis approaches supported by a graphical interface for a convenient specification of complex models.

Keywords

Hierarchical Modelling Queueing Networks Coloured GSPNs Tensor Based Numerical Analysis Combined Qualitative and Quantitative Analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Ajmone-Marsan, G. Balbo, and G. Conte. Performance models of multiprocessor systems. MIT Press Series in Computer Science (1986).Google Scholar
  2. 2.
    F. Bause. Queueing Petri Nets — a formalism for the combined qualitative and quantitative analysis of systems. In: PNPM'93, IEEE Press (1993) 14–23.Google Scholar
  3. 3.
    F. Bause, P. Buchholz, and P. Kemper. Hierarchically combined Queueing Petri Nets. In: G. Cohen, J. P. Quadrat (eds.), 11th Int. Conference on Analysis and Optimizations of Systems, Springer LNCIS 199 (1994) 176–182.Google Scholar
  4. 4.
    F. Bause and P. Kemper. QPN-Tool for the qualitative and quantitative analysis of Queueing Petri Nets. In: G. Haring, G. Kotsis (eds.); Computer Performance Evaluation, Modelling Techniques and Tools 94, Springer LNCS 794 (1994).Google Scholar
  5. 5.
    F. Bause, H. Kabutz, P. Kemper, P. Kritzinger. SDL and Petri net performance analysis of Communicating systems. 15th International Symposium on Protocol Specification, Testing and Verification, Warsaw (Poland), June 1995.Google Scholar
  6. 6.
    H. Beilner, J. Mäter, N. Weißenberg. Towards a performance modelling environment: news on HIT. In R. Puigjaner (ed.), Proc. of the 4th Int. Conf. on Modelling Tools and Techniques for Comp. Perf. Eval., Plenum Publishers (1988).Google Scholar
  7. 7.
    P. Buchholz. A hierarchical view of GCSPNs and its impact on qualitative and quantitative analysis. J. of Parallel and Distributed Computing 15 (1992) 207–224.CrossRefGoogle Scholar
  8. 8.
    P. Buchholz. Aggregation and reduction techniques for hierarchical GCSPNs. In: PNPM'93, IEEE Press (1993) 216–225.Google Scholar
  9. 9.
    P. Buchholz. A class of hierarchical queueing networks and their analysis. Queueing Systems 15 (1994) 59–80.CrossRefMathSciNetGoogle Scholar
  10. 10.
    G. Chiola, C. Dutheillet, G. Franceschini, S. Haddad. Stochastic well-formed coloured nets and multiprocessor modelling applications. IEEE Trans. on Comp. 42 (1993).Google Scholar
  11. 11.
    G. Chiola. GreatSPN 1.5 Software Architecture. In: G. Balbo and G. Serazzi (eds.), Computer Performance Evaluation, North Holland (1992) 121–136.Google Scholar
  12. 12.
    G. Ciardo, J. Muppala, K.S. Trivedi. SPNP: stochastic Petri net package. in PNPM'89, IEEE Press (1989) 142–151.Google Scholar
  13. 13.
    T. Demaria, G. Chiola, G. Bruno. Introducing a color formalism into Generalized Stochastic Petri nets. In: Proc. of the 9th Int. Workshop on Application and Theory of Petri Nets (1988) 202–215.Google Scholar
  14. 14.
    S. Donatelli. Superposed Generalized Stochastic Petri nets: definition and efficient solution. In R. Valette (ed.), Application and Theory of Petri Nets 1994, Springer LNCS 815 (1994) 258–277.Google Scholar
  15. 15.
    R. German, C. Kelling, A. Zimmermann, G. Hommel. TimeNET: a toolkit for evaluating non-markovian stochastic Petri nets. to appear in Performance Evaluation (1995).Google Scholar
  16. 16.
    P. Huber, K. Jensen, R.M. Shapiro. Hierarchies in coloured Petri nets. In: G. Rozenberg (ed.), Adv. in Petri Nets 1990, Springer LNCS 483 (1991) 215–243.Google Scholar
  17. 17.
    P. Kemper. Linear time algorithm to find a minimal deadlock in a strongly connected free-choice net. In: M. Ajmone-Marsan (ed.), Application and Theory of Petri Nets 93, Springer LNCS 691 (1993) 319–338.Google Scholar
  18. 18.
    K. Lautenbach. Linear algebraic calculation of deadlocks and traps. In: K. Voss, H.J. Genrich, and G. Rozenberg (eds.). Concurrency and Nets, Springer (1987).Google Scholar
  19. 19.
    C. Lindemann. DSPNexpress: a software package for the efficient solution deterministic and stochastic Petri nets. to appear in Performance Evaluation (1995).Google Scholar
  20. 20.
    J. Martinez and M. Silva. A simple and fast algorithm to obtain all invariants of a generalized Petri net. Application and Theory of Petri Nets, Selected Papers 1st, 2nd Europ. Workshop on Application and Theory of Petri Nets, 1981.Google Scholar
  21. 21.
    B. Plateau, J.M. Forneau, K.H. Lee. PEPS: A package for solving complex Markov models of parallel systems. In R. Puigjaner (ed.), Proc. of the 4th Int. Conf. on Modelling Tools and Techniques for Comp. Perf. Eval., Plenum Publishers (1988).Google Scholar
  22. 22.
    D.A. Reed. Experimental analysis of parallel systems: techniques and open problems. In: G. Haring, G. Kotsis (eds.); Computer Performance Evaluation, Modelling Techniques and Tools 94, Springer LNCS 794 (1994).Google Scholar
  23. 23.
    W.H. Sanders, W.D. Obal, M.A. Qureshi, F.K. Widjanarko. The UltraSAN modelling environment. to appear in Performance Evaluation (1995).Google Scholar
  24. 24.
    W.J. Stewart. Introduction to the numerical solution of Markov chains. Princeton University Press (1994).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Falko Bause
    • 1
  • Peter Buchholz
    • 1
  • Peter Kemper
    • 1
  1. 1.Informatik IVUniversity of DortmundDortmundGermany

Personalised recommendations