Skip to main content

Thermodynamically induced shear degradation

  • Conference paper
  • First Online:
Polymer Physics

Part of the book series: Advances in Polymer Science ((POLYMER,volume 85))

Abstract

The shear degradation of polymers in semiconcentrated solutions is viewed as a function of solvent quality. It is shown that the deterioration of the thermodynamic quality of the solvent leads to a marked flow resistance due to an increasing number of contacts between the chains. This may be probed by viscosimetric measurements as well as by degradation experiments (“thermodynamically induced shear degradation”). For a detailed discussion of this phenomenon the experimental setup for the mechanochemical experiment is outlined first, followed by a survey of the kinetics of chain scission. Finally, experiments mostly obtained on polystyrene in the theta-solvent trans-decalin are discussed. The results of mechanochemical investigations together with those of viscosimetric investigations are shown to provide useful information on polymer dynamics at high shear rates in semiconcentrated solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6 References

  1. Staudinger H (1932) Die hochmolekularen organischen Verbindungen. Springer-Verlag, Berlin

    Google Scholar 

  2. Kuhn W (1930) Ber. 63: 1503

    Google Scholar 

  3. Jellinek HHG (1955) Degradation of Polymers. Academic Press, New York

    Google Scholar 

  4. Grassie N (1956) Chemistry of High Polymer Degradation Processes. Butterworth. London

    Google Scholar 

  5. Schnabel W (1981) Polymer Degradation, Principles and Practical Applications. Hanser International, München

    Google Scholar 

  6. Breitenbach JW, Wolf BA, Rigler JK (1973) Makromol. Chem. 164: 353

    Article  CAS  Google Scholar 

  7. Ballauff M, Wolf BA (1984) Macromolecules 17: 209

    Article  CAS  Google Scholar 

  8. Ballauff M (1981) Dissertation Mainz

    Google Scholar 

  9. Herold FK, Schulz GV, Wolf BA (1986) Polymer Comm. 27: 59

    CAS  Google Scholar 

  10. Ballauff M, Wolf BA (1981) Macromolecules 14: 654

    Article  CAS  Google Scholar 

  11. Casale A, Porter RS (1978, 1979) Polymer Stress Reactions. Vol. 1, 2, Academic Press, New York

    Google Scholar 

  12. Basedow AM, Ebert KH, Hunger H (1979) Makromol. Chem. 180: 411

    Article  CAS  Google Scholar 

  13. Ebert F (1980) Strömung nichtnewtonischer Medien. Vieweg, Braunschweig

    Google Scholar 

  14. Ballauff M, Krämer H, Wolf BA (1983) J. Pol. Sci. Pol. Phys. Ed. 21: 1205

    Article  CAS  Google Scholar 

  15. Hengstenberg J, Stumm B, Winckler O (1964) Messen und Regeln in der chemischen Technik. 2. Auflage, Berlin

    Google Scholar 

  16. (Autorenkollektiv) (1973) Lehrbuch der chemischen Verfahrenstechnik. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig

    Google Scholar 

  17. Schäfer KI, Lax E (eds) (1962) Landolt-Börnstein. II. Teil. Berlin

    Google Scholar 

  18. Tung LH (1966) J. Appl. Pol. Sci. 10: 375

    Article  CAS  Google Scholar 

  19. Greschner GS (1979) Makromol. Chem. 168: 273

    Article  Google Scholar 

  20. Wesslau A (1956) Makromol. Chem. 20: 111

    Article  CAS  Google Scholar 

  21. Breitenbach JW (1954) in: R. Houwink. Chemie und Technologie der Kunststoffe. Band I. Akademische Verlagsgesellschaft, Leipzig; G. V. Schulz, A. Dinglinger, E. Husemann, Z. phys. Chem. B43, 385 (1939)

    Google Scholar 

  22. Wolf BA, Jend R (1977) Makromol. Chem. 178: 1811

    Article  CAS  Google Scholar 

  23. Herold FK, Wolf BA (1986) Mat. Chem. Phys. 14: 311

    Article  CAS  Google Scholar 

  24. Herold FK, Schulz GV, Wolf BA (1983) Mat. Chem. Phys. 8: 243

    Article  CAS  Google Scholar 

  25. Ballauff M, Krämer H, Wolf BA (1983) J. Pol. Sci. Pol. Phys. Ed. 21: 1217

    Article  CAS  Google Scholar 

  26. Hayashi H, Hamada F, Nakajima A (1977) Makromol. Chem. 178: 827

    Article  CAS  Google Scholar 

  27. Graessley WW (1974) Adv. Pol. Sci. 16: 1

    Article  Google Scholar 

  28. Graessley WW (1967) J. Chem. Phys. 47: 1942

    Article  CAS  Google Scholar 

  29. Ito Y, Shiina S, Tokue I (1982) Makromol. Chem. 183: 505

    Article  CAS  Google Scholar 

  30. Bueche F (1960) J. Appl. Pol. Sci. 4: 101

    Article  CAS  Google Scholar 

  31. Schmidt JR, Wolf BA (1979) Coll. Pol. Sci. 257: 1188

    Article  CAS  Google Scholar 

  32. Wolf BA (1980) Makromol. Chem. Rapid Comm. 1: 231

    Article  CAS  Google Scholar 

  33. Wolf BA (1984) Macromolecules 17: 615

    Article  CAS  Google Scholar 

  34. Krämer H, Wolf BA (1985) Makromol. Chem. Rapid Comm. 6: 21

    Article  Google Scholar 

  35. Schulz GV (1939) Z. Phys. Chem. B 43: 25

    Google Scholar 

  36. Schmid G (1940) Z. Phys. Chem. A 186: 913

    Google Scholar 

  37. Montroll EW, Simha R (1940) Chem. Phys. 8: 721

    CAS  Google Scholar 

  38. Saito O (1958) J. Phys. Soc. Japan, 13: 198

    Article  CAS  Google Scholar 

  39. Kotliar AM (1960) J. Pol. Sci. 45: 541

    Article  CAS  Google Scholar 

  40. Inokuti M, Dole M (1963) J. Pol. Sci. Part A 1: 3289

    CAS  Google Scholar 

  41. Boyd RH (1970) in: Conley RT (ed) Thermal Stability of Polymers. Marcel Dekker, New York, Vol. 1, Chapter 3

    Google Scholar 

  42. Simha R (1941) J. Appl. Phys. 12: 569

    Article  CAS  Google Scholar 

  43. Jellinek HHG, White G (1951) J. Pol. Sci. 6: 745

    Article  CAS  Google Scholar 

  44. Mostafa MAK (1956) ibid. 22: 535

    Article  CAS  Google Scholar 

  45. Basedow AM, Ebert KH, Ederer H (1978) Macromolecules 11: 774

    Article  CAS  Google Scholar 

  46. Ziff RM, McGrady ED (1986) ibid. 19: 2513

    Article  CAS  Google Scholar 

  47. Glynn PAR, van der Hoff BME, Reilly PM (1972) J. Makromol. Sci. Chem. A6: 1653

    Google Scholar 

  48. Schulz GV (1939) Z. Phys. Chem. B43: 25

    CAS  Google Scholar 

  49. Stoer J (1979) Einführung in die numerische Mathematik I. Springer-Verlag, Berlin

    Google Scholar 

  50. Herold FK, Wolf BA (1983) Makromol. Chem. 184: 2539

    Article  CAS  Google Scholar 

  51. Basedow AM, Ebert KH (1977) Adv. Pol. Sci. 22: 83

    CAS  Google Scholar 

  52. Henglein A (1955) Z. Naturforsch. 10B: 616

    CAS  Google Scholar 

  53. Henglein A (1955) Makromol. Chem. 15: 188

    Article  CAS  Google Scholar 

  54. Henglein A (1956) ibid. 18: 37

    Article  Google Scholar 

  55. Sheth PJ, Johnson JF, Porter RS (1977) Polymer 18: 741

    Article  CAS  Google Scholar 

  56. Odell JO, Keller A (1986) J. Pol. Sci. Phys. Ed. 24: 1889

    Article  CAS  Google Scholar 

  57. Nguyen TQ, Kausch HH (1986) Coll. Pol. Sci. 264: 764

    Article  CAS  Google Scholar 

  58. Bestul AB (1960) J. Chem. Phys. 32: 350

    Article  CAS  Google Scholar 

  59. Wolf BA, Makromol. Chem. Rapid Commun., accepted

    Google Scholar 

  60. Richter D, Binder K, Ewen B, Stühn B (1984) J. Phys. Chem. 88: 6618 Ewen B, Richter D, Festkörperforschung/Advances in Solid State Physics, in press

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag

About this paper

Cite this paper

Ballauff, M., Wolf, B.A. (1988). Thermodynamically induced shear degradation. In: Polymer Physics. Advances in Polymer Science, vol 85. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0024049

Download citation

Publish with us

Policies and ethics