On the expressive power of modal logics on trees

Extended abstract
  • Bernd-Holger Schlingloff
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 620)


Various logical languages are compared regarding their expressive power with respect to models consisting of finitely bounded branching infinite trees. The basic multimodal logic with backward- and forward necessity operators is equivalent to restricted first order logic; by adding the binary temporal operators ”since” and ”until” we get the expressive power of first order logic on trees. Hence (restricted) propositional quantifiers in temporal logic correspond to (restricted) set quantifiers in predicate logic. Adding the CTL path modality ”E” to temporal logic gives the expressive power of path logic. Tree grammar operators give a logic as expressive as weak second order logic, whereas adding fixed point quantifiers (in the so-called propositional μ-calculus) results in a logic expressivly equivalent to monadic second order logic on trees.


Modal logic temporal logic branching time logic computation tree logic CTL propositional μ-calculus Lμ definability expressiveness expressive completeness ω-tree automata ω-trees ω-tree languages specification languages 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ArNi91]
    A. Arnold, D. Niwinsky: Fixed point characterization of weak monadic second order logic of trees; technical report 91-06, Laboratoire Bordelais de Recherche en Informatique, Université de Bordeaux I; (1991).Google Scholar
  2. [CES83]
    E.M. Clarke, E.A. Emerson, A.P. Sistla: Automatic Verification of Finite-State Concurrent Systems Using Temporal Logic Specifications; in: Proc. 10th ACM POPL, pp.117–126; Austin, TX (1983). reappeared in: ACM Trans. Prog. Lang. & Syst. 8.2, pp.244–263; (1986).Google Scholar
  3. [Cle90]
    R. Cleaveland: Tableau-Based Model Checking in the Propositional Mu-Calculus; in: Acta Informatica 27, pp.725–747; (1990).CrossRefGoogle Scholar
  4. [EmHa83]
    E.A. Emerson, J.Y. Halpern: “Sometimes” and “Not Never” Revisited: On Branching versus Linear Time (preliminary report); in: Proc. 10th ACM POPL, pp.127–140; Austin, TX (1983). reappeared in: Journal of the ACM 33.1, pp.151–178; (1986).Google Scholar
  5. [EmLe86]
    E.A. Emerson, C.-L. Lei: Efficient Model Checking in Fragments of the Propositional Mu-Calculus; in: Proc. IEEE Symp. on Logic in Comp. Sci., pp.267–278; Cambridge, MA (1986).Google Scholar
  6. [EmJu91]
    E.A. Emerson, C.S. Jutla: Tree Automata, Mu-Calculus and Determinacy, in: Proc. 32nd IEEE Symp. on Found. of Comp. Sci., pp.368–377; (1991).Google Scholar
  7. [HaTh88]
    T. Hafer, W. Thomas: Computation Tree Logic CTL* and Path Quantifiers in the Monadic Theory of the Binary Tree; in: T. Ottmann (ed.): ICALP 1987, LNCS 267; (1988). Short version of T. Hafer: On the Expressive Completeness of CTL *; Bericht Nr. 123, Schriften zur Informatik, RWTH Aachen; (1986).Google Scholar
  8. [Heu89]
    U. Heuter: Zur Klassifizierung regulärer Baumsprachen; Dissertation, RWTH Aachen; (1989).Google Scholar
  9. [Koz82]
    D. Kozen: Results on the Propositional μ-Calculus; in: Proc. 9th ICALP, LNCS 140, pp.348–359; (1982).Google Scholar
  10. [KoPa83]
    D. Kozen, R. Parikii: A Decision Procedure for the Propositional μ-Calculus; in: Proc. Logics of Programs, LNCS 164, pp.313–325; (1983).Google Scholar
  11. [MSS88]
    D. Muller, A. Saoudi, P. Schupp: Alternating Automata Give a Simple Explanation of Why Most Temporal and Dynamic Logics Are Decidable in Exponential Time; in: Proc. 3rd IEEE Symp. on Logic in Comp. Sci., pp.422–427; (1988).Google Scholar
  12. [Niw88]
    D. Niwinsky: Fixed Points vs. Infinite Generation; in: Proc. 3rd IEEE Symp. on Logic in Comp. Sci., pp.402–409; (1988).Google Scholar
  13. [Par81]
    D. Park: Concurrency an Automata on Infinite Sequences; in: Proc. 5th GI Conf. on Theor. Comp. Sci., LNCS 104, pp.167–183; (1981).Google Scholar
  14. [Rab69]
    M.O. Rabin: Decidability of Second-Order Theories and Automata on Infinite Trees; in: Trans. AMS 141, pp.1–35; (1969).Google Scholar
  15. [Rab70]
    M.O. Rabin: Weakly Definable Relations and Special Automata; in: Y. Bar-Hillel (ed.): Mathematical Logic and Foundations of Set Theory, pp.1–23; North-Holland, Amsterdam (1970).Google Scholar
  16. [Sch90]
    B.-H. Schlingloff: Zur temporalen Logik von Bäumen; Report TUM-I9012, Institut für Informatik der Technischen Universität München; (1990).Google Scholar
  17. [Sch92]
    B.-H. Schlingloff: Expressive Completeness of Temporal Logic of Trees; To appear in: Journal of Applied Non-Classical Logics 2.2; Hermes, Paris (1992).Google Scholar
  18. [StEm89]
    R. Streett, E.A. Emerson: An Automata Theoretic Decision Procedure for the Propositional Mu-Calculus; in: Information and Computation 81, pp.249–264; (1989).CrossRefGoogle Scholar
  19. [Tak86]
    M. Takahashi: The Greatest Fixed-Points and Ratinal Omega-Tree Languages; in: Theoretical Computer Science 44, pp.259–274; (1986).CrossRefGoogle Scholar
  20. [Wol83]
    P. Wolper: Temporal Logic Can Be More Expressive; in: Information and Control 56, pp.72–99; (1983).CrossRefGoogle Scholar
  21. [WVS83]
    P. Wolper, M.Y. Vardi, A.P. Sistla: Reasoning About Infinite Computation Paths; in: Proc. 24th IEEE Symp. on Found. of Comp. Sci., pp.185–194; (1983).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Bernd-Holger Schlingloff
    • 1
  1. 1.Institut für Informatik der Technischen Universität MünchenMünchen 80Germany

Personalised recommendations