Partial algebra + order-sorted algebra = galactic algebra

  • Aristide Mégrelis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 620)


Galactic algebra is a clean superset of universal algebra, which suits this intention: to consider semi-functions (partial functions) and subsets of some universe, then to reason in a uniform way about identity (equality of terms), membership, and inclusion. The logic of galactic algebra is expressed as a first-order Hilbert-style system, which has all the desired qualities. — This text means an announcement and a description of my thesis [9]. Only the proof technique is explained.


Logic of equality partial algebra order-sorted algebra partial function subtype 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bidoit, M.; Kreowski, H.-J.; Lescanne, P.; Orejas, F.; Sannella, D.; eds. Algebraic system specification and development — A survey and annotated bibliography. Springer-Verlag; 1991. (Lecture notes in computer science; 501).Google Scholar
  2. [2]
    Burmeister, P. A model-theoretic oriented approach to partial algebras. Berlin: Akademie-Verlag; 1986. (Mathematical research; 31).Google Scholar
  3. [3]
    Burstall, R. M.; Goguen, J. A. Algebras, theories and freeness — An introduction for computer scientists. Theoretical foundation of programming methodology — Lecture notes of an international summer school. Dordrecht, Holland, the Netherlands: D. Reidel; 1982. (NATO Advanced Study Institutes series).Google Scholar
  4. [4]
    Goguen, Joseph A.; Meseguer, José. Order-sorted algebra-I-Partial and overloaded operators, errors and inheritance. Menlo Park, California: S.R.I. International; 1986, March 25; technical report, draft.Google Scholar
  5. [5]
    Goguen, J.; Kirchner, C.; Kirchner, H.; Mégrelis, A.; Meseguer, J.; Winkler, T. An introduction to OBJ 3. Jouannaud, J.-P.; Kaplan, S.; eds. Proceedings of the first international workshop on conditional term-rewriting systems; 1987, July 8–10; Orsay, France. Springer-Verlag; 1988. (Lecture notes in computer science; 308).Google Scholar
  6. [6]
    Grätzer, George. Universal algebra. D. van Nostrand; 1968. (The university series in higher mathematics).Google Scholar
  7. [7]
    Isakowitz, Tomás; Gallier, Jean H. Congruence closure in order-sorted algebra. Philadelphia, Pennsylvania, U.S.A.: University of Pennsylvania; 1988, June 24; technical report.Google Scholar
  8. [8]
    Manca, V.; Salibra, A.; Scollo, G. Equational type logic. Conference on algebraic methodology and software technology (AMAST); 1989, May; Iowa City, Iowa, U.S.A. Theoretical Computer Science. 77(1 & 2); 1990, December 7.Google Scholar
  9. [9]
    Mégrelis, Aristide. Algèbre galactique — Un procédé de calcul formel, relatif aux semi-fonctions, à l'inclusion et à l'égalité. Nancy, France: Université Nancy I; 1990, septembre; thèse [thesis].Google Scholar
  10. [10]
    Poigné, Axel. Partial algebras, subsorting, and dependent types — Prerequisites of error handling in algebraic specifications. Proceedings of a workshop on abstract data types. Springer-Verlag; 1988. (Lecture notes on computer science; 332).Google Scholar
  11. [11]
    Reichel, Horst. Initial computability, algebraic specifications, and partial algebras. Berlin: Akademie-Verlag; 1987. (The international series of monographs on computer science; 2).Google Scholar
  12. [12]
    Schmidt-Schauß, Manfred. Computational aspects of an order-sorted logic with term declarations. Springer-Verlag; 1989. (Lecture notes in artificial intelligence; 395).Google Scholar
  13. [13]
    Smolka, Gert; Nutt, Werner; Goguen, Joseph A.; Meseguer José. Order-sorted equational computation. Ait-Kaci, H.; Nivat, M.; eds. Resolution of equations in algebraic structures-Vol. 2-Rewriting techniques. Academic Press; 1989.Google Scholar
  14. [14]
    Thomas, Christophe. VEGA — Système de vérification formelle de preuve. Nancy, France: Université Nancy I; 1991, juin [June] [; report, written in French].Google Scholar
  15. [15]
    Waldmann, Uwe. Semantics of order-sorted specifications. Dortmund, Deutschland: Universität Dortmund, Abteilung Informatik; 1989; Forschungsbericht Nr. 297 [research report].Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Aristide Mégrelis
    • 1
  1. 1.INRIA-Lorraine-C.N.R.S.-CRINVillers-lès-Nancy CedexFrance

Personalised recommendations