The “last” decision problem for rational trace languages

  • Jacques Sakarovitch
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 583)


It is established here that it is decidable whether a rational set of a free partially commutative monoid (i.e. trace monoid) is recognizable or not if and only if the commutation relation is transitive (i.e. if the trace monoid is isomorphic to a free product of free commutative monoids). The bulk of the paper consists in a characterization of recognizable sets of free products via generalized finite automata.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    IJ. J. Aalbersberg and H. J. Hoogeboom, Characterizations of the Decidability of Some Problems for Regular Trace Languages, Math. Systems Theory 20, 1989, 1–19.Google Scholar
  2. 2.
    IJ. J. Aalbersberg and E. Welz, Trace languages defined by regular string languages, RAIRO Inform. Théor. 22, 1986, 103–119.Google Scholar
  3. 3.
    A. Bertoni, G. Mauri and N. Sabadini, Unambiguous regular trace languages, in Algebra, Combinatorics, and Logic in Computer Science (J. Demetrovics, G. Katona, and A. Salomaa, eds), Col. Math. Soc. Janos Bolyay 42, North Holland, 1985.Google Scholar
  4. 4.
    J. Berstel, Transductions and Context-Free Languages, Teubner, 1979.Google Scholar
  5. 5.
    S. Eilenberg, Automata, Languages and Machines, vol. A, Academic Press, 1974.Google Scholar
  6. 6.
    C. C. Elgot and J. E. Mezei, On relations defined by generalized finite automata, IBM J. Res. and Develop. 9, 1965, 47–68.Google Scholar
  7. 7.
    M. P. Flé et G. Roucairol, Maximal serializability of iterated transactions, Theoret. Comput. Sci. 38, 1985, 1–16.Google Scholar
  8. 8.
    S. Ginsburg and E. Spanier, Bounded ALGOL-like Languages, Trans. Amer. Math. Soc. 113, 1964, 333–368.Google Scholar
  9. 9.
    S. Ginsburg and E. Spanier, Semigroups, Presburger formulas and languages, Pacif. J. Math. 16, 1966, 285–296.Google Scholar
  10. 10.
    O. Ibarra, Reversal-Bounded Multicounter Machines and their Decisions Problems, J. Assoc. Comp. Machinery 25, 1978, 116–133.Google Scholar
  11. 11.
    L. P. Lisovik, The identity problem for regular events over the direct product of free and cyclic semigroups (in Ukrainian) Dok. Akad. Nauk Ukraiinskoj RSR ser. A 6, 1979, 410–413. [translation in English by Andreas Weber, manuscript].Google Scholar
  12. 12.
    A. Mazurkiewicz, Trace theory, in Petri Nets, Applications and Relationship to other Models of Concurrency, L. N. C. S. 255, 1987, 279–324.Google Scholar
  13. 13.
    J. Sakarovitch, On regular trace languages, Theoret. Comput. Sci. 52, 1987, 59–75.Google Scholar
  14. 14.
    G. Sénizergues, Solution of a conjecture about rational subsets of a free group, to appear in Acta Informatica.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Jacques Sakarovitch
    • 1
  1. 1.Institut Blaise PascalParis Cedex 05

Personalised recommendations