Proving termination for term rewriting systems

  • Andreas Weiermann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 626)


In the first part this paper gives an order-theoretic analysis of the multiset ordering, the recursive path ordering and the lexicographic path ordering with respect to order types and maximal order types. In the second part relativized ordinal notation systems, i. e. “ordinary” ordinal notation systems relativized to a given partial order, are introduced and investigated for the general study of precedence-based termination orderings. It is indicated that (at least) the reduction orderings mentioned above are special cases of this construction.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. A. Cichon: Bounds on derivation lengths from termination proofs. Technical Report CSD-TR-622, Department of Computer Science, University of London, Surrey, England, June 1990.Google Scholar
  2. [2]
    J. N. Crossley, J. B. Kister: Natural well-orderings. Archiv für Mathematische Logik und Grundlagenforschung 26 (1986/87), pp. 57–76.Google Scholar
  3. [3]
    N. Dershowitz, J. P. Jouannaud: Rewrite systems. In: Handbook of Theoretical Computer Science, Part B, Elsevier 1990, pp. 243–320.Google Scholar
  4. [4]
    N. Dershowitz, M. Okada: Proof theoretic techniques for term rewriting theory. Proceedings of the Third Annual Symposium on Logic in Computer Science, Edinburgh, July 1988, pp. 104–111.Google Scholar
  5. [5]
    S. Feferman: Proof theory: A personal report. In the appendix of: G. Takeuti: Proof Theory. North-Holland 1987, pp. 447–485.Google Scholar
  6. [6]
    J. H. Gallier: What's so special about Kruskal's theorem and the ordinal Г0? A survey of some results in proof theory. Annals of Pure and Applied Logic 53 (1991), pp. 199–260.Google Scholar
  7. [7]
    J. Y. Girard: Introduction to Π 21-logic. Synthese 62 (1985), pp. 191–216.Google Scholar
  8. [8]
    L. Gordeev: Generalizations of the Kruskal-Friedman theorems. Journal of Symbolic Logic 55 (1990), pp. 157–181.Google Scholar
  9. [9]
    L. Gordeev: Systems of iterated projective ordinal notations and combinatorial statements about binary labeled trees. Archive for Mathematical Logic 29 (1989), pp. 29–46.Google Scholar
  10. [10]
    D. H. J. de Jongh, R. Parikh: Well-partial orderings and hierarchies. Indagationes Math. 39 (1977), pp. 195–207.Google Scholar
  11. [11]
    C. R. Murthy, J. R. Russell: A constructive proof of Higman's lemma. Proceedings of the Fifth Annual Symposium on Logic and Computer Science, Philadelphia, PA, June 1990, pp. 257–267.Google Scholar
  12. [12]
    M. Okada, G. Takeuti: On the theory of quasi-ordinal diagrams. Contemporary Mathematics 65, Logic and Combinatorics, Proceedings of the AMS (1987), pp. 295–308.Google Scholar
  13. [13]
    M. Rathjen: Proof-theoretic analysis of KPM. Archive for Mathematical Logic 30 (1990), pp. 377–403.Google Scholar
  14. [14]
    K. Schütte: Proof Theory. Springer, 1977.Google Scholar
  15. [15]
    K. Schütte: Ein Wohlordnungsbeweis für das Ordinalzahlensystem T(J). Archive for Mathematical Logic 27 (1988), pp. 5–20.Google Scholar
  16. [16]
    D. Schmidt: Well-Partial Orderings and Their Maximal Order Types. Habilitationsschrift, Heidelberg 1979.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Andreas Weiermann
    • 1
  1. 1.Institut für Mathematische Logik und GrundlagenforschungMünsterFederal Republic of Germany

Personalised recommendations